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Abstract—A novel wireless local area network (WLAN) security
processor is described in this paper. It is designed to offload
security encapsulation processing from the host microprocessor
in an IEEE 802.11i compliant medium access control layer to a
programmable hardware accelerator. The unique design, which
comprises dedicated cryptographic instructions and hardware
coprocessors, is capable of performing wired equivalent privacy,
temporal key integrity protocol, counter mode with cipher block
chaining message authentication code protocol, and wireless ro-
bust authentication protocol. Existing solutions to wireless security
have been implemented on hardware devices and target specific
WLAN protocols whereas the programmable security processor
proposed in this paper provides support for all WLAN protocols
and thus, can offer backwards compatibility as well as future
upgrade ability as standards evolve. It provides this additional
functionality while still achieving equivalent throughput rates to
existing architectures.

Index Terms—Cryptography, data security, wireless local area
network (WLAN).

I. INTRODUCTION

WIRELESS devices have limited processing power and
battery life. This is contradictory to the ever-increasing

data throughputs of complex security protocols, which are in de-
mand in order to continue the growth of wireless technologies
[1], [2]. The nature of frequently changing and evolving secu-
rity protocols also necessitates the use of devices with re-pro-
grammable hardware. Such devices support variable function-
ality to counteract security weaknesses and provide a degree of
future proofing for what will inevitably become legacy hard-
ware.

IEEE 802.11i [3] is an optional amendment to the IEEE
802.11 standard offering enhanced security at the medium
access control (MAC) layer, through: a) an improved Rivest
Cipher 4 (RC4) [4], [5] based scheme for legacy systems; b)
advanced encryption standard (AES)-based encryption [6], [7]
in newer wireless local area network (WLAN) devices; c) a
design which has been integrated with IEEE 802.1x [8], [9] to
provide a system whereby clients and access points must query
an authentication server.

The wired equivalent privacy (WEP) security scheme defined
in the IEEE 802.11b standard has effectively been enhanced to
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an implementation known as temporal key integrity protocol
(TKIP), designed for use in legacy systems and which was
offered to the consumer by the interim wi-fi protected access
(WPA) standard as IEEE 802.11i was being finalized. New
802.11 stations and access points are expected to implement a
more secure and modern scheme described by IEEE 802.11i
that is based on AES. There has been much fluctuation in
the evolvement of the IEEE 802.11i standard. As such, two
AES schemes have been proposed, of which the royalty-free,
well-understood and proven cipher block chaining message
authentication code (CBC-MAC) protocol (CCMP) appears to
have emerged as dominant at the expense of the new, licensable
and efficient wireless robust authentication protocol (WRAP)
based on Rogaway’s offset codebook mode (OCB) [10] for
block ciphers.

Previous research into cryptographic microprocessor archi-
tectures has included extensions to instruction sets in order to
increase the performance of symmetric key [11] and asymmetric
key [12] cryptographic algorithms. Also, Fiskiran and Lee [13]
have developed a data-scalable, general-purpose processor ar-
chitecture with cryptographic extensions. However, these pre-
vious architectures do not utilise hardware coprocessors and are
targeted at cryptographic algorithms rather than applications.
Commercial WLAN security solutions do exist, such as Elliptic
Semiconductor’s CCM Internet protocol (IP) core [14] and He-
lion’s 802.11i CCM IP core [15]. These efficient hardware cores
integrate into application-specific integrated circuit (ASIC) de-
signs, but only perform one WLAN protocol and do not offer
the versatility of software. Cavium Network’s NITROX proces-
sors [16] offer impressive data throughputs and versatility for
numerous security applications, but are expensive in terms of
area and thus, lack the compactness of a dedicated WLAN se-
curity solution. Also, the Cavium processors do not support the
WEP or WRAP protocols, which are required to provide back-
wards compatibility.

In this paper, a dedicated WLAN security architecture is pro-
posed. It comprises the authors’ own primitive reduced instruc-
tion set computer (RISC) processor design and two hardware
coprocessors, which perform AES and RC4 encryption. The
RISC processor is designed to not only execute a standard range
of arithmetic and logic instructions, but also dedicated crypto-
graphic instructions that are required to implement WLAN pro-
tocols, such as Michael authentication [3], a packet authenti-
cation algorithm developed for IEEE 802.11i and 32-bit cyclic
redundancy checks (CRC32). The WLAN processor has been
designed specifically to perform the frame processing require-
ments of WEP, TKIP, WRAP, and CCMP as specified in Draft
3.0 of the IEEE 802.11i standard. It should be noted that WRAP
was not included in the final IEEE 802.11i standard. The pro-
grammability of the processor also provides the ability to ma-
nipulate packet types, such as AES-CCM or AES-OCB encap-
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Fig. 1. IEEE 802.11 device-to-device interface.

sulation, which can provide functionality for IP security (IPSec)
[17], [18].

The structure of the paper is as follows. In Section II, a brief
background is given to the AES and RC4 algorithms and the
basic operation of an IEEE 802.11 wireless network. Section III
describes the operation and architecture of the processor and
details how it generates IEEE 802.11 frames. The performance
of the processor is outlined in Section IV. Finally, conclusions
are given in Section V.

II. BACKGROUND ON AES, RC4, AND IEEE 802.11

A. AES (Rijndael) Algorithm

AES [19] is a block cipher specified by the National Institute
of Science and Technology (NIST) and is a standardized form of
the Rijndael symmetric cipher. AES has a 128-bit block size and
a variable key length of 128, 192 or 256 bits. This fast high se-
curity cipher is currently being introduced into many hardware
and software security products, driven by the need for increased
security in Internet traffic and many other multimedia products.

B. RC4 Stream Cipher

RC4 [4] is a proprietary stream cipher developed by Ron
Rivest for RSA Data Security Inc. Stream ciphers are a class of
symmetric-key encryption that are of particular interest to com-
munications systems, such as WLAN, as they possess the im-
portant property of having no error propagation.

C. IEEE 802.11 Standard

The IEEE 802.11 standards define the MAC and Physical
(PHY) layers of wireless LAN. The original standard de-
scribed a wireless communication technology that operated at
1 megabits per second (Mbps). The IEEE 802.11b amendment
introduced in 1999 increased the maximum throughput to 11
Mbps, while the newly created IEEE 802.11 a and g standards
have introduced new technologies to increase the maximum
theoretical throughput of this wireless communication tech-
nology to 54 Mbps.

As IEEE 802.11 is a form of wireless communication, it does
not offer the inherent security of a wired LAN, as wireless com-
munications disseminate information indiscriminately. To offer
a level of security similar to that of wired LANs, the optional
WEP amendment was introduced. This provides a means of con-
fidentiality and authentication in the packetized data, through
the use of the RC4 stream cipher for encryption and cyclic re-
dundancy checks to provide a checksum for authentication pur-
poses. WEP has been shown to be a weak security protocol [20]

with many flaws [21], [22] and manufacturers have improved
upon the standard by introducing their own amendments and
enhancements.

To address the need for enhanced security as the uptake
of wireless communications increases, IEEE developed the
802.11i standard for enhanced MAC security. This new stan-
dard provides a standardized upgrade of the WEP scheme for
implementation on legacy systems, which is known as TKIP.
However, new devices are expected to use the higher security
AES block cipher, in either the CCMP or WRAP incarnations.

The basic outline of the processing layers in an IEEE 802.11
station is illustrated in Fig. 1. The MAC layer accepts data for
transmission in the form of MAC data units (MDUs) from the
logical link layer (LLC) in the system. The MAC creates and
passes MAC physical data units (MPDUs) and other control
and management packetized data (known as frames) to the PHY
layer. The PHY performs modulation of the input frames to
produce output data suitable for transmission over the wireless
medium. By monitoring the activity on the wireless medium
through the PHY, the MAC will determine that it can transmit
data if the wireless medium is inactive.

Encryption and other cryptographic processing of frames in
IEEE 802.11i occur at the MAC layer, prior to passing frames
to the PHY. All frames delivered to the PHY from the MAC are
composed of header fields, an optional data payload field and
finally a frame check sequence (FCS) composed of a CRC32
checksum for error detection purposes. The security schemes
in IEEE 802.11i only alter the data payload and subsequently
the FCS field that is calculated over the data field. The header
field may be used for creating parameters for authentication pur-
poses.

III. WLAN SECURITY PROCESSOR ARCHITECTURE

The novel WLAN security processor proposed in this paper
and depicted in Fig. 2, comprises the basic elements of any RISC
processor—a memory controller to interface with RAM, an op-
eration decode unit, a register bank, write-back logic, an arith-
metic and logic unit (ALU) and a barrel shifter. In addition to
these units, RC4 and AES encryption coprocessors have been
added and are accompanied by IEEE 802.11i specific instruc-
tions to provide support for CRC32 checksums and Michael au-
thentication tags.

The processor can execute the majority of instructions in
two or three cycles. This allows for simple control logic and
pipelining of execution logic, resulting in few logic levels
between registers in the design. As a result, it is able to operate
at the target frequency of 80 MHz in field-programmable gate
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Fig. 2. WLAN security processor block diagram.

array (FPGA) technologies, a common operating frequency in
commercial MAC/PHY products.

A. Design Rationale

The underlying design of the WLAN security processor is
the authors’ own simple RISC execution pipeline, which is ca-
pable of a standard range of arithmetic and logic instructions.
This simplified processing element is enhanced to specifically
accelerate and provide sufficient performance for WLAN secu-
rity encapsulation.

This is achieved with the addition of specific instructions
required to implement WLAN protocols, such as CRC genera-
tion and Michael authentication. These involve simple logical
operations requiring bit shifting and XOR operations. Such
operations could be performed using the basic ALU instructions
of the processor. However, a large number of instructions
would be required. As these are commonly used operations
in the target application, hardware instructions with limited
gate counts have been added to the instruction set of the
WLAN processor.

Taking this enhancement of a commonly used operation a step
further, complex encryption operations such as AES and RC4
may also be accelerated using a number of RISC instructions.
For example, AES may use a number of instructions in order
to implement a complete Rijndael round transform. However,
the processor must implement numerous instructions in series
to encrypt an entire block and each of these instructions,
alongside any expanded AES keyspace, must be stored in
RAM. In the WLAN processor design described here, greater
performance is achieved using separate coprocessors which
perform the operations in parallel with the main processing
pipeline in a single instruction. In addition, keyspace generation
is performed on-the-fly in hardware requiring no extra RAM
storage.

The use of coprocessors to accelerate the complex encryp-
tion algorithms also allows AES or RC4 processing to be per-
formed in parallel to other operations, such as data fetch/store to
main memory. This, therefore, allows complex RC4 encryption

to be performed in parallel to load/store and Michael authenti-
cation. This approach offers the higher throughput required for
modern wireless applications, while maintaining a lower clock
frequency that is important to reduce power dissipation. The co-
processors used in the architecture are based on commercially
available RC4 and AES cores [23].

B. WLAN Security Processor Description

Synchronous read RAM is used to efficiently store the mi-
crocode that defines the frame encapsulation schemes, all input
frames and all generated output frame data. Before processing
can commence, the input data must be written into memory and
the processor’s configuration registers must contain the address
pointers for the aperture of RAM containing both the input and
output frames.

The WLAN processor has two distinct and simple interfaces,
which are shown in Fig. 2. These include a simple 32-bit
input–output (I/O) bus to interface with an external memory
that contains the instruction and data memory and a second
32-bit I/O bus which interfaces to the processor’s configuration
interface. Both of these simplified busses provide a simple
bridge to commonly used processor busses, such as the autore-
gressive model (ARM) advanced peripheral bus (APB) [24].

The processor has two external interfaces, as shown in Fig. 3.
The first is for any controlling MAC and consists of a simple
data bus allowing the MAC to access the memory-mapped
registers of the WLAN security processor. The second interface
is to external RAM storage and can be one of many different
configurations. The lower address range of memory is utilized as
instruction RAM. The size of this memory region is dependant
on the instruction microcode required. The upper address range
is used as a frame buffer. ROM may be used to store the
instruction RAM when the size of this memory is fixed.

The most desirable memory configuration is to have a sepa-
rate programmable ROM configured to store the microcode and
a dual-port RAM to act as a frame buffer. This allows the mi-
crocode to be programmed once and avoids instructions being
lost at power off. A dual-port frame buffer allows the MAC and
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Fig. 3. RAM configurations.

Fig. 4. Execution block diagram.

WLAN security processor to access data simultaneously. If a
more compact RAM configuration is desirable, one single-port
RAM can be used to store instructions and to act as a frame
buffer, although this requires more careful access to RAM from
the MAC and security processor.

The register bank is composed of a 32-word register file, uti-
lizing two read ports and a write port. There are no register win-
dows and the processor has access to all 32 registers. The 32-bit
codeword is segmented into five sections, to provide: (a) an 8-bit
instruction code; (b) a 5-bit source A; (c) a 5-bit source B; (d)
a 5-bit destination register, and (e) a 9-bit region used to store
miscellaneous data. The segmented regions of each instruction
provide the instruction decode logic with all of the information
required to determine the data to be manipulated, how to ma-
nipulate it and where to place the result.

When processing an instruction, the instruction codeword is
first fetched from memory and passed to the decode logic. In
the next clock cycle the 32-bit codeword is extended to create
specific control data for the ALU, barrel shifter or coprocessors
that are to be executed and to read source data from the register
bank. In the second clock cycle the extended instruction data is
passed to the relevant execution hardware logic alongside the
input data from the register bank, where it is then manipulated.
In the third and final cycle, the resulting data is written back
to the register bank. The execution pipeline shown in Fig. 4 is
highly simplified and requires three cycles to perform most in-
structions.

Control of the input and output address pointers is left to the
rest of the system. In the event that the aperture in the RAM,
selected by the address pointers, is overrun by the operating en-
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Fig. 5. State diagram describing host processor control.

Fig. 6. AES coprocessor block diagram

capsulation program then an interrupt signal is asserted and all
processing ceases until the host microprocessor re-initializes the
security processor.

In terms of operation, the state diagram shown in Fig. 5 illus-
trates a basic overview of the steps a host microprocessor must
take in controlling the security processor in an 802.11 MAC.
Once the processor has been initialized with microcode and the
frame data to be processed has been written to the frame store,
the processor is ready to begin encapsulation. All that must be
done by the host microprocessor to encapsulate the frame is to
set the address pointers to indicate where the input and output
frames are located in RAM and issue a start command to the
processor. When encapsulation of a frame is complete, an inter-
rupt is generated. The encapsulated frame can then be read from
RAM by the MAC host microprocessor.

C. Cryptographic Coprocessors

1) AES: A commercial AES core [23] has been utilised in
the creation of the proposed security processor design. This IP
core is capable of both encryption and decryption and uses a
fixed key length of 128-bits. It features a 32-bit datapath and
an on-the-fly key scheduler that negates the need to store the
expanded keyspace. The core has been interfaced with a copro-
cessor bus so that it can be controlled by the processor’s ex-
ecution pipeline. The output data is buffered such that it may
be accessed as necessary. The status signals from the AES core

have been manipulated to form an interrupt. The basic architec-
ture of this core is outlined in Fig. 6.

2) RC4: The RC4 core [23] used interfaces to the execution
pipeline through a coprocessor bus and is shown in Fig. 7. This
RC4 core comprises a 256-byte dual-port RAM used to store the
RC4 state array. Simple state machine and counter logic is used
to manipulate the RAM contents in order to swap data bytes
and perform permutations on the contents. The core must be
initialized with a key, an operation that requires 1152 cycles.
The RC4 core produces a stream of pseudorandom data that it
XORs with an input byte stream.

D. Processing Encapsulated IEEE 802.11 Frames

IEEE 802.11i requires the use of two basic encryption
primitives—AES and RC4. WEP and TKIP use RC4 for con-
fidentiality purposes to transform plaintext to/from ciphertext.
CRC32 and Michael are used to provide authentication in the
form of message integrity check (MIC) and integrity check
value (ICV) fields in TKIP and WEP frames respectively. These
values are appended to the MPDU of a frame, while initializa-
tion vectors and miscellaneous control data are inserted at the
start of the MPDU.

An RC4 coprocessor is used to perform all RC4 processing.
Together with CRC32 support and other specialized instructions
(such as support for the Feistel-based Michael authentication al-
gorithm), the WLAN security processor can efficiently perform
all 802.11 and 802.11i security encapsulation.
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Fig. 7. RC4 block diagram.

Fig. 8. WEP encapsulation and decapsulation frame structure.

WRAP and CCMP utilize AES to perform all confidentiality
and authentication services. WRAP is based on AES-OCB and
is more efficient than CCMP in terms of the AES processing
required, but is a licensed scheme. CCMP is a royalty free
scheme based on AES-CTR and AES-CBC-MAC and has a
proven record of security in comparison to AES-OCB.

The WLAN security processor has an embedded AES core
acting as a coprocessor, which provides AES functionality for
128-bit key sizes. In order to increase performance and flex-
ibility, it is possible to perform AES and/or RC4 in parallel
to other instructions in order to increase data throughput. The
range of instructions provided enables the use of current and
possibly many future block cipher modes of operation that could
be applied to AES.

1) WEP Frame Processing: The following is an example of
how the WLAN security processor implements WEP according
to the developed reference software. The microcode that has
been written to implement WEP on the WLAN security pro-
cessor is provided in Appendix A. WEP is largely similar to
TKIP and can reuse much of the same microcode. The first step
is to write the input frame (known as an MPDU, or MAC pro-
tocol data unit) and its particular parameters to an aperture of
RAM in a structure predefined by the embedded software, as
shown in Fig. 8. The software will initialise the RC4 coprocessor
with the relevant state array according to the key used.

If encapsulation is being performed, as indicated by the con-
trol register, the initialization vector (IV) is written to the output
frame aperture. The length of the MPDU is contained in the con-
trol register and is checked when using the “IN” instruction to
read words sequentially from the input aperture to the general
purpose (GP) registers. These 32-bit words are then passed to
the RC4 coprocessor for encryption and to perform a CRC32
generation instruction (the CRC32 checksum is reset with every
new frame automatically). The encrypted data words are written
sequentially to the output frame aperture using the “OUT” in-
struction, which allows data to be written to RAM sequentially
as if being written to a first-in first-out (FIFO).

When the last 0–3 bytes of data have been encrypted and
written back to GP registers, the final CRC32 generation
instruction is executed and the CRC32 checksum is read from
the coprocessor and written to GP registers. The checksum,
known as an ICV and the last few encrypted bytes are aligned
correctly in the register bank and can then be written to the
output aperture. A software exception is then executed which
generates an interrupt and returns the security processor to
an idle state.

At this point, the MAC host microprocessor will have been
informed that an encapsulated MPDU is contained in the output
aperture. The MAC layer can then use this encapsulated MPDU
to easily construct a MAC frame by pre-pending the relevant
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Fig. 9. CCMP encapsulation frame structure.

IEEE 802.11 header and appending a frame check sequence
(FCS) CRC32 checksum.

Decapsulation of WEP frames is very similar and reutilises
some of the same microcode, as does the TKIP reference soft-
ware. The major differences with TKIP are the use of Michael
instead of CRC32 for authentication purposes and the use of an
RC4 key stream that alters with every frame rather than one that
remains static. The RC4 coprocessor is designed to be initial-
ized for every new frame, which is a necessity for TKIP and
requires 1152 cycles before it is ready to process data. During
initialization the processor can continue to execute non-RC4 in-
structions.

2) CCMP Frame Processing: CCMP is less complex than
WRAP. However, it places much more of a burden on the pro-
cessing power of any software or hardware implementation as it
requires an additional second AES pass for every 128-bit AES
block. The use of a coprocessor in the WLAN security processor
helps overcome this problem by allowing non-AES instructions
to be performed while the AES coprocessor is busy.

The microcode that has been written to implement CCMP on
the WLAN security processor is given as an example in Ap-
pendix B.

CCMP processing is performed in an identical manner to
WEP, omitting RC4 for AES. The input data structure, as shown
in Fig. 9, is arranged to aid the WLAN security processor such
that extra cycles are not consumed to correctly align fields of
the frame. The key occupies the first 4 words of the input data,
which is directly read from RAM and written to the AES co-
processor. The CBC-MAC IV, the header length (encoded in a
32-bit field to simplify data alignment), the initial CTR value
and the frame’s Packet Number (PN) follow the key.

The header fields are first processed according to the parame-
ters indicated in the control register to remove the duration field
and mask the retry bit to zero, as these can change upon re-
transmission of a frame. This processed header is aligned with
the header length (obtained from control register) and the PN.
This data is then processed using the CBC-MAC algorithm, with

zero padding of the last bytes if necessary. Simultaneous to pro-
cessing the header and performing any CBC-MAC operations,
the frame header is output to RAM.

Once the header has been fully processed, the data field can be
operated on. Each 128-bit block of the MPDU is processed by
interleaving the CBC-MAC and CTR algorithms, with the CTR
blocks sequentially output to RAM. The last AES-CTR block of
the MPDU is truncated according to the data length (stored in
the control register) and the MIC generated by the CBC-MAC
algorithm is appended for AES-CTR encryption. The WLAN
security processor can process data using non-AES instructions
while data is being encrypted, allowing blocks of data to be
prepared in the register bank in parallel to AES encryption, thus
improving the overall throughput. The CRC32 instructions may
also be used to calculate the FCS field if desired.

The microcode required for CCMP is more complex than that
required for any of the IEEE 802.11 security schemes. This is
largely due to the requirement for header processing, the cycles
consumed in aligning the different data fields and the two con-
currently operating AES modes of operation (CTR and CBC-
MAC).

E. Instruction Set

Table I provides a brief description of the cryptographic in-
structions utilised in the WEP and CCMP microcode given in
Appendixes A and B.

IV. PERFORMANCE EVALUATION

The WLAN security processor proposed in this paper has
been described in Verilog and modelled with a cycle-accurate
C++ model, which identically matches the ports in each Verilog
RTL module in the design. It was simulated using ModelTech
ModelSim and the functionality of the core was verified against
the functional C++ model using self-checking testbenches. Test
vectors were obtained from various sources, such as the NIST
[6], the IEEE 802.11 Task Group I [3] and the IETF [17], to
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TABLE I
CRYPTOGRAPHIC INSTRUCTIONS

Fig. 10. WEP performance.

verify the capability of the core to perform RC4 and AES en-
cryption, and the various packet encapsulation schemes. The
C++ model executable allows accurate debugging of microcode
and fast performance evaluations to be made, such as the bits
per cycle performance shown in Figs. 10–13. This allows mi-
crocode to be tested on a hardware model and cycle counts to
process MPDUs to be rapidly collated.

RC4 requires an initialization period of 1152 cycles regard-
less of data payload length. Initialization of coprocessors and
the register bank for every new packet or key change can be ex-
pected to have a greater effect upon small data fields. This is

Fig. 11. TKIP performance.

because the number of cycles required for initialization is fixed
for each security scheme, hence contributing to larger perfor-
mance degradation in smaller frames, particularly when RC4 is
utilized. This is illustrated in Figs. 10 and 11.

AES-based CCMP requires less initialization than the RC4-
based WEP or TKIP, as illustrated by Fig. 12. This is largely
attributable to the absence of key initialization in AES. The
degradation in performance of encryption to decryption in WEP,
TKIP, and CCMP is attributable to the additional processing
required in the decryption algorithms. WRAP encryption and
decryption are largely identical and therefore have an identical
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Fig. 12. CCMP performance.

Fig. 13. WRAP performance.

processing bandwidth, as seen by the performance illustrated in
Fig. 13.

WRAP has a 50% reduction in AES processing requirements
compared to its AES-based counterpart CCMP. However, it
also requires more complex initialization and data processing
to be performed using the less efficient general-purpose in-
structions—although this can be performed in parallel to the
AES encryption. Therefore, although 50% less AES processing
is required per data block, the extra processing required to
perform encryption and authentication in WRAP results in only
10% greater throughput when compared with CCMP.

The WLAN processor was synthesized using Synplify Pro to
create netlists for FPGA implementation. The Verilog RTL in-
cludes compile-time parameters that implement technology de-
pendant resources, such as RAM. Altera Quartus II and Xilinx
Foundation Series 5.2 were used to perform place and routing
of the netlist onto Altera Stratix and Xilinx Virtex II devices, re-
spectively. Synopsys Design Compiler was also used to synthe-
size the core using TSMC 0.13- m standard cell libraries under
worst case conditions. The performance results obtained are il-
lustrated in Table II.

The WLAN security processor is composed of three func-
tional blocks, the processor control and execution logic, and the

TABLE II
WLAN SECURITY PROCESSOR TECHNOLOGY RESOURCE USAGE

TABLE III
TSMC 0.13-�m LOGIC SIZE WITH 250-MHZ CLOCK RATE

TABLE IV
PERFORMANCE COMPARISON OF COMMERCIALLY AVAILABLE SECURITY

PROCESSORS

two encryption coprocessors (AES and RC4). The logic size
of these blocks as implemented on TSMC 0.13- m standard
cell libraries under worst conditions is illustrated in Table III.
The RAM size may differ depending upon application. The fig-
ures quoted are worst case (i.e., one 256 8 dual-port RAM
for RC4 functionality, one 4096 32 dual-port RAM for packet
buffer and instruction memory). The larger buffer RAM may be
single-port, and may be reduced in size depending upon the re-
quired specification.

A comparison of the proposed WLAN processor with the
commercially available solutions outlined in Section I is pro-
vided in Table IV.

The WLAN security processor offers a dedicated solution to
wireless security, providing efficient hardware acceleration for
the complex operations of encryption and a software driven ex-
ecution pipeline providing versatility. From Table IV it is evi-
dent that this design compares only moderately with currently
available solutions in terms of throughput. However, the major
advantage of the processor is that it achieves this with additional
functionality to perform the WLAN protocols required to pro-
vide backwards compatibility to existing networks as well as
those required in future IEEE 802.11i compatible networks.

Helion offer an AES-CCM IP core solution with a throughput
of up to 2 Gbps and Elliptic Semiconductor provide a CCMP
core, which runs at 300 –700 Mbps and can support the addition
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of WEP and TKIP functionality. However, limited design de-
tails of these commercial solutions are available. Also, since the
common operating frequency in commercial MAC/PHY prod-
ucts is 80 MHz and the IEEE 802.11a/g standards only require a
throughput of 54 Mbps, these architectures are a very expensive
solution for wireless applications and lack the compactness of
a dedicated WLAN processor. The proposed processor’s power
efficiency is lower in comparison to the commercial solutions
due to the supplemental hardware and execution time required
to process software. However, when compared to general-pur-
pose processor solutions, it will be more power efficient since
it utilises hardware accelerators. Since the AES and RC4 en-
cryption algorithms are accelerated in hardware in only a small
number of instructions, the processor has the advantage of a
greatly reduced software footprint. For example, the processor
performs AES in just 6 instructions in comparison to approx-
imately 640 instructions on a general-purpose processor [25].
These six instructions include 2 to load the 128-bit data block
and 4 to write the output block to the register file. A status reg-
ister is read to determine if AES has completed.

V. CONCLUSION

In this paper, a novel WLAN security processor is described
which incorporates IEEE 802.11i specific instructions and AES
and RC4 coprocessors. It has been recognized that there is a
security processing gap in wireless devices, caused by the low
power and relatively low processing capabilities of such devices
and the demands of complex security protocols on micropro-
cessor technologies.

Cryptographic instructions contained in the instruction
set architecture (ISA) of microprocessor technologies can
significantly improve the performance of security protocols
operating on such microprocessors. Another method to increase
throughput is to implement a hardware block to perform all
secure packet processing for a particular application, or provide
certain functionality such as AES encryption and map this
into a processor’s address space as a peripheral device or a
coprocessor with fixed functionality. Industrially available
microprocessor technologies utilizing such techniques include
ARMs SecureCore [24] family, MIPS’ SmartMIPS [26] or
ARC [27].

The design described here combines both of these approaches
to provide a processor designed specifically to perform efficient
cryptographic processing of WLAN frames, with little inter-
vention from the host microprocessor. As the host micropro-
cessor is no longer burdened by performing bulk encryption and
packet formatting of 802.11 frames, more processing power can
be used to enhance and improve other services on a wireless
handset. For example, the user interface may be more feature
rich and responsive, there may be less lag experienced when
using data services and dedicated hardware can perform cryp-
tographic functions more efficiently than a general-purpose pro-
cessor thus improving battery life.

Providing a software engine on which to execute the packet
processing using dedicated cryptographic instructions allows
changes to be made to the method of encapsulation, while
maintaining the efficiency and high throughput of hardware
encryption coprocessors. The current fluctuations in IEEE

802.11i standards can be overcome by implementing the
WLAN security processor into a design, as it can be repro-
grammed to accommodate any changes to packet structure or
security scheme. As the AES and RC4 encryption algorithms
are performed in hardware with a handful of instructions, the
WLAN security processor also has the advantage of a greatly
reduced software footprint.

In comparison to existing solutions, which have been targeted
at specific WLAN protocols, the security processor described in
this paper offers support for all WLAN protocols and thus, sup-
port for backwards compatibility and future upgrade ability as
standards evolve. Moreover, it achieves this extra functionality
at a throughput rate required by current 802.11a/g standards.

Licensable security schemes such as WRAP can be imple-
mented through software patches, made optionally available to
those wishing to purchase the license in order to use a more
versatile and feature rich WLAN device. The processor may
be programmed to perform encapsulation of other packet types,
such as IPSec packets utilizing AES or RC4 based encryption.
The ability to enable extra functionality by a simple software
upgrade can be used as a distinguishing feature of a WLAN
product in a competitive marketplace and offers the user a de-
gree of future-proofing in their wireless LAN system.

APPENDIX A
WEP MICROCODE

1. Each instruction listed is converted to a 32-bit instruction
by an assembler utility.

2. Code is based on IEEE 802.11 WEP Security Enhance-
ment.

// 1st 2 words contain 40-bit WEP key

// 3rd word contains 32-bit IV

// Subsequent data contains MPDU/ICV if decapsulation

REG 1 6 SET // Set reg0x01 to 6

RC4 INIT 1 // Initialize RC4 processor

SETWAIT RC4 // Set interrupt to RC4

IN 4 2 // Load WEP key and IV

REG 2 3 SET

REG 8 1 SET

REG 7 6 MOV

REG 7 2 MSBMASK

REG 3 4 MOV

REG 3 8 MSBMASK

REG 3 0 ENDIAN

REG 3 7 OR

REG 4 8 LSBMASK

REG 9 8 SET

REG 4 9 LSHIFT

REG 5 8 MSBMASK

REG 5 0 ENDIAN

REG 4 5 OR

WAIT
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RC4 KEY 3

WAIT

RC4 LASTKEY 4

WAIT

REG 12 0 MOV

REG 13 12 SET

REG 12 13 RSHIFT 30

// Encapsulation (26)

OUT 6 0 // output IV for encapsulated frames

REG 1 4 SET

REG 0 1 MTEQUAL 34 // If true – normal encapsulation

GOTO 41 99 // Do final operation

REG 12 10 EQUAL 26

REG 12 13 LSHIFT

REG 0 12 XOR

REG 0 1 SUB 72

// Normal word encapsulation (34)

IN 4 0

RC4 WRITE 4

CRC32 GEN 4

REG 0 1 SUB

WAIT

RC4 READ 4

OUT 4 0 28

// Pad final bytes, pull out CRC32 ICV (41)

REG 0 10 EQUAL 67

IN 4 0

REG 4 0 MSBMASK

RC4 NUMB 0

RC4 WRITE 4

WAIT

CRC32 NUMB 0

CRC32 GEN 4

RC4 NUMB 10

RC4 READ 4

CRC32 PULL 5

RC4 WRITE 5

WAIT

RC4 READ 5

REG 6 5 MOV

REG 8 0 MOV

REG 0 10 EQUAL 61

REG 5 9 ROTR

REG 6 9 ROTR

REG 0 0 DECR 57

REG 5 8 LSBMASK

REG 1 8 SUB

REG 6 8 MSBMASK

REG 5 4 OR

OUT 5 1

RETURN

CRC32 PULL 5

RC4 WRITE 5

WAIT

RC4 READ 5

OUT 5 0 66

// Decapsulation (72)

REG 1 4 SET

REG 0 1 MTEQUAL 76 // If true – normal encapsulation

GOTO 83 // Do final operation

STATUS 0

// Normal word decapsulation (76)

IN 4 0

RC4 WRITE 4

REG 0 1 SUB

WAIT

RC4 READ 4

CRC32 GEN 4

OUT 4 0 73

// Pad final bytes, pull out CRC32 ICV (83)

IN 4 1

REG 2 4 SET

REG 2 0 ADD

RC4 WRITE 4

REG 2 1 SUB

WAIT

RC4 READ 4

REG 2 10 EQUAL 95

RC4 NUMB 2

RC4 WRITE 5

WAIT

RC4 READ 5 100

CRC32 PULL 5

REG 4 5 EQUAL 98

REG 4 1 SET 99

REG 4 0 SET
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REG 1 0 CLR 113

CRC32 NUMB 2

CRC32 GEN 4

CRC32 NUMB 10

CRC32 PULL 6

REG 3 4 MOV

REG 4 0 LSBMASK

REG 3 0 MSBMASK

OUT 3 0

REG 4 5 OR

REG 4 9 ROTL

REG 2 0 DECR

REG 2 10 MORETHAN 109

REG 5 6 MOV 96

REG 2 0 CLR

REG 3 0 CLR

REG 4 0 CLR

REG 5 0 CLR

REG 6 0 CLR

REG 7 0 CLR

REG 8 0 CLR

REG 9 0 CLR

REG 12 0 CLR

REG 13 0 CLR

STATUS 4

APPENDIX B
CCMP MICROCODE

1. Each instruction listed is converted to a 32-bit instruction
by an assembler utility.

2. Code is based on IEEE 802.11i draft 3.0.

IN 4 3 // Load in AES key

AESWRITE 4 0

AESWRITE 5 1

AESWRITE 6 2

AESWRITE 7 3 // Write AES key to AES core

REG 1 5 SET

REG 3 4 SET // register 3 set to 4

REG 1 3 LSHIFT

REG 2 9 SET

REG 1 2 OR // 0x59 flags field generated

IN 4 1 // Load A2 field into register 4 and 5

IN 24 1 // Load PN field into register 0x18 and 0x19

REG 2 2 SET

REG 4 2 LSBMASK

REG 1 0 ENDIAN

REG 4 1 OR

STATUS 0

// CCMP transmission notes:

//

// Input frame to be CCMP encapsulated has following format:

// 4 word KEY, 2 word A2, 2 word PN, 1 word CTR, variable length header,
variable

// length data HLEN and DLEN is stored in cc_sec config register

//

// 1. 4 word key is loaded and passed to AES core

// 2. CBC-MAC IV in 16–19 is constructed from first 10 words

// 3. HLEN is stored in register 20 (decremented by 2)

// 4. CTR is stored in 21–24

// 5. PN is stored in register 25 –26

// CCMP Initialisation code

// NOTES: 1. will write 3 LSW of CBC-MAC to AES

// 2. will write input data in registers 4–7

// 3. will write CBC-MAC IV to 21–24

IN 4 3 // Load in AES key

AESWRITE 4 0

AESWRITE 5 1

AESWRITE 6 2

AESWRITE 7 3 // Write AES key to AES core

REG 1 5 SET

REG 3 4 SET // register 3 set to 4

REG 1 3 LSHIFT

REG 2 9 SET

REG 1 2 OR // 0x59 flags field generated

IN 4 1 // Load A2 field into register 4 and 5

IN 25 1 // Load PN field into register 0x1a and 0x1b

REG 2 15 SET

REG 8 15 SET

REG 2 3 LSHIFT

REG 2 8 OR // Set register 2 to mask 0x000000ff

REG 3 8 SET

REG 8 2 MOV

REG 8 3 LSHIFT

REG 2 8 OR // Set register 2 to mask 0x0000ffff

REG 4 2 AND // AND register 4 to mask out top 16 bits

REG 1 3 LSHIFT

REG 1 3 LSHIFT

REG 1 3 LSHIFT

REG 4 1 OR // Create MSW of CCM IB

REG 6 25 MOV

REG 9 1 SET
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REG 3 9 LSHIFT

REG 6 3 LSHIFT

REG 28 26 MOV

REG 28 3 RSHIFT

REG 6 28 OR // 3nd word of CCM IB in register 6

REG 7 26 MOV

REG 7 3 LSHIFT // Place lower 2 bytes of PN in register 7

REG 28 0 MOV

REG 28 2 AND // Mask off DLEN

REG 7 28 OR // Create LSW of CCM IB -> 4–7 now contains CCM IB

IN 24 0

REG 28 7 MOV

REG 24 2 AND

REG 21 4 MOV

REG 21 2 AND

REG 2 0 NOT

REG 28 2 AND

REG 24 28 OR

REG 22 5 MOV

REG 23 6 MOV

REG 0 3 RSHIFT

REG 3 9 RSHIFT

REG 9 3 ROTR

REG 21 9 OR // create CTR IV -> 21–24

REG 2 0 NOT

REG 25 2 AND

REG 1 12 SET

SETWAIT AESRDY .INITCCMP

.CCMP_MAINLOOP_CHECK

REG 0 1 LESSTHAN .CCMP_BLOCK_PAD // do final CCMP processing

GOTO .CCMP_LOOP . CCMP_MAINLOOP_CHECK

// CCMP Loop code – 21–24

// NOTES: 1. expects MSW of CBC-MAC to be written to AES

// 2. expects input data in 4–7

// 3. expects CBC-MAC IV in 21–24

// 4. expects CTR IV in 12–15

// 5. expects 16 bytes for processing

.CCMP_LOOP

AESWRITE 24 7 // start CBC-MAC processing

AESREAD 0 8 // read AES-CTR output to 8–11

AESREAD 1 9

AESREAD 2 10

AESREAD 3 11

REG 15 0 INCR // increment CTR

REG 8 4 XOR // XOR plaintext with CTR output

REG 9 5 XOR

REG 10 6 XOR

REG 11 7 XOR

OUT 8 3 // output ciphertext

AESWRITE 12 4 // write CTR to AES

AESWRITE 13 5

AESWRITE 14 6

WAIT

AESWRITE 15 7

AESREAD 0 21 // read new CBC-MAC value

AESREAD 1 22

AESREAD 2 23

AESREAD 3 24

REG 21 4 XOR // XOR plaintext with current CBC-MAC in 21–24

REG 22 5 XOR

REG 23 6 XOR

REG 24 7 XOR

IN 4 3

GOTO .ENDIANCONV .WRITECBCMAC // do endian conversion

.WRITECBCMAC

AESWRITE 21 4 // write CBC-MAC plaintext to AES

AESWRITE 22 5

AESWRITE 23 6

REG 0 1 SUB // decrement data length counter by 16 (bytes)

RETURN // return to higher code level

IDLE (2)

// CCMP block endian conversion

// NOTES: 1. converts registers 4–7 to bigendian

.ENDIANCONV

REG 4 0 ENDIAN

REG 5 0 ENDIAN

REG 6 0 ENDIAN

REG 7 0 ENDIAN

RETURN

// Initial CCMP data processing

// NOTES: 1. expects data length in 0

// 2. expects input data space reserved in 4–7

// 3. expects CBC-MAC IV in 21–24

// 4. expects CTR IV in 12–15

// 5. expects more than 16 bytes of data

.INITCCMP

IN 4 3

GOTO .ENDIANCONV .CONT_INITCCMP // do endian conversion

.CONT_INITCCMP

REG 21 4 XOR
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REG 22 5 XOR

REG 23 6 XOR

REG 24 7 XOR

AESWRITE 21 4

AESWRITE 22 5

AESWRITE 23 6

.CHECK_INITCCMP

REG 0 1 LESSTHAN .CCMP_BLOCK_PAD

GOTO .CCMP_LOOP .CHECK_INITCCMP

RETURN // return to higher level for final block processing and MIC
generation

// CCMP AES block padder

// NOTES: 1. expects data length in 0

// 2. places data in registers 4–7

// 3. converts to bigendian

// 4. inserts zero-padding

.CCMP_BLOCK_PAD

REG 2 4 SET

REG 5 0 CLR

REG 6 0 CLR

REG 7 0 CLR

REG 0 5 MORETHAN .CCMP_DO_PAD

IDLE // should obtain MIC otherwise, i.e., GOTO command

.CCMP_DO_PAD

IN 4 0

REG 0 2 LESSTHAN .CCMP_PAD_LTA

REG 4 0 ENDIAN

REG 4 2 SUB .CCMP_RESUME_PADA

.CCMP_PAD_LTA

REG 4 0 ZPAD

REG 4 0 ENDIAN

GOTO .CCMP_FINAL 0 // goto write AES code

.CCMP_RESUME_PADA

IN 5 0

REG 0 2 LESSTHAN .CCMP_PAD_LTB

REG 5 0 ENDIAN

REG 5 2 SUB .CCMP_RESUME_PADB

.CCMP_PAD_LTB

REG 5 0 ZPAD

REG 5 0 ENDIAN

GOTO .CCMP_FINAL 0 // goto write AES code

.CCMP_RESUME_PADB

IN 6 0

REG 0 2 LESSTHAN .CCMP_PAD_LTC

REG 6 0 ENDIAN

REG 6 2 SUB .CCMP_RESUME_PADC

.CCMP_PAD_LTC

REG 6 0 ZPAD

REG 6 0 ENDIAN

GOTO .CCMP_FINAL 0 // goto write AES code

.CCMP_RESUME_PADC

IN 7 0

REG 0 2 LESSTHAN .CCMP_PAD_LTD

REG 7 0 ENDIAN

REG 7 2 SUB . CCMP_FINAL

.CCMP_PAD_LTD

REG 7 0 ZPAD

REG 7 0 ENDIAN

// CCMP Final processing code

// NOTES: 1. expects final padded data block in 4–7

// 2. expects CBC-MAC IV in 21–24

// 3. expects CTR IV in 12–15

.CCMP_FINAL

AESWRITE 24 7 // start CBC-MAC processing

AESREAD 0 8 // read AES-CTR output to 8–11

AESREAD 1 9

AESREAD 2 10

AESREAD 3 11

REG 8 4 XOR // XOR plaintext with CTR output

REG 9 5 XOR

REG 10 6 XOR

REG 11 7 XOR

OUT 8 3 // output last ciphertext block

WAIT

AESREAD 0 21 // read new CBC-MAC value

AESREAD 1 22

AESREAD 2 23

AESREAD 3 24

REG 21 4 XOR // XOR plaintext with current CBC-MAC in 21–24

REG 22 5 XOR

REG 23 6 XOR

REG 24 7 XOR

AESWRITE 21 4

AESWRITE 22 5

AESWRITE 23 6

AESWRITE 24 7 // start CBC-MAC processing

WAIT

AESREAD 0 21 // read new CBC-MAC value

AESREAD 1 22

AESREAD 2 23

AESREAD 3 24

OUT 21 1 // output MIC

IDLE
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