
Introduction to
Programming
in Turing

First Edition - Second Printing

J. N. P. Hume

Holt Software Associates, Inc.
Toronto, Canada

© 2001 by the author
Toronto, Ontario, Canada

All rights reserved. No part of this book may be reproduced,
in any way or by any means, without permission of the author.

Publisher:
HOLT SOFTWARE ASSOCIATES INC.
203 College St., Suite 305
Toronto, Ontario, Canada M5T 1P9
(416) 978-6476 1-800-361-8324
http://www.holtsoft.com

ISBN: 0-921598-42-4

First Edition - Second Printing

Printed in Canada by the University of Toronto Press

Table of Contents
PREFACE ... IX

ACKNOWLEDGMENTS... XV

1 COMPUTING ESSENTIALS ...1
1.1 Introduction...2
1.2 A Brief History of Computer Hardware2
1.3 A Brief History of Programming ..7

1.3.1 A New Way of Organizing Large Programs.......13
1.4 What is a Computer?..14

1.4.1 The Central Processing Unit..............................15
1.4.2 Memory..16
1.4.3 Output Devices ..18

1.5 Number Systems: Decimal and Binary18
1.6 Hardware and Networks ...21

1.6.1 Different Kinds of Computers for Different Needs24
1.6.2 The Silicon Chip ..25

1.7 Software ...27
1.7.1 Operating Systems ..27
1.7.2 Programming Environments27
1.7.3 Applications ...28

1.8 The Social Impact of Computers ..30
1.8.1 Employment...31
1.8.2 Privacy...32
1.8.3 Access to Information ..32
1.8.4 Leisure Activities..34
1.8.5 Illegal Activity...34
1.8.6 Computers: Good or Bad?.................................35

1.9 Exercises ..36
1.10 Technical Terms ...38

ii Introduction to Programming in Turing

2 THE TURING ENVIRONMENT .. 43
2.1 Introduction .. 44
2.2 The Editor Window... 44

2.2.1 Cut, Copy, and Paste.. 46
2.2.2 Undo ... 47

2.3 Saving Programs on Disk... 47
2.4 Running Programs ... 49

2.4.1 Input/Output Redirection 51
2.5 Indenting Programs and Syntax Coloring............................. 53

2.5.1 Indenting Programs... 53
2.5.2 Syntax Coloring... 53

2.6 Starting and Stopping the Environment 54
2.7 Opening an Existing Program .. 55
2.8 Searching for Text in a File .. 56

2.8.1 Finding Text in a File... 57
2.8.2 Replacing Text in the File 58

2.9 Printing a Program ... 59
2.10 Example Turing Programs ... 60
2.11 Exercises ... 63
2.12 Technical Terms .. 64

3 PROGRAM DESIGN AND STYLE.. 66
3.1 Programming and Programmers.. 67
3.2 Programming Style... 68
3.3 The Software Development Process.................................... 70
3.4 Procedure-Oriented Programming 74
3.5 Exercises ... 75
3.6 Technical Terms .. 76

4 SIMPLE PROGRAMS... 77
4.1 A One-Line Program .. 78
4.2 Changing the Program... 78
4.3 Substituting One String of Characters for Another............... 79
4.4 A Program that Computes ... 79
4.5 Integers and Real Numbers ... 80
4.6 Arithmetic Expressions... 81
4.7 Combining Calculations and Messages 82
4.8 Output of a Series of Items .. 82

Table of Contents iii

4.9 A Series of Output Statements ...83
4.10 Exercises ..84
4.11 Technical Terms ...86

5 VARIABLES AND CONSTANTS...87
5.1 Storing Information in the Computer.....................................88
5.2 Declaring Variables...88

5.2.1 Names of Variables ...89
5.3 Inputting Character Strings ...89

5.3.1 Strings Containing Blanks..................................90
5.4 Mistakes in Programs ...91
5.5 Inputting Numbers ..92

5.5.1 Mistakes in Data ..92
5.6 Inputting Real Numbers ..93
5.7 Constants ...94
5.8 Assignment of Values to Variables95
5.9 Understandable Programs..96
5.10 Comments in Programs..97
5.11 Exercises ..98
5.12 Technical Terms ...100

6 REPETITION...103
6.1 Loops..104
6.2 Conditional Loops...105

6.2.1 Comparisons ...106
6.2.2 Comparing Strings...107
6.2.3 An Example Conditional Loop108
6.2.4 Another Conditional Loop110

6.3 Counted Loops ...111
6.3.1 Counting in Multiples113
6.3.2 Indenting the Body of Loops............................114
6.3.3 Loops that Count Backwards...........................114
6.3.4 Counted Loop Examples115
6.3.5 Counted Loops with Exits117

6.4 Random Exit from Loop..118
6.5 Compound Conditions ..119
6.6 Exercises ..120
6.7 Technical Terms ...124

iv Introduction to Programming in Turing

7 CHARACTER GRAPHICS.. 127
7.1 Character Locations in the Execution Window................... 128
7.2 Creating a Graphical Pattern with Characters.................... 129

7.2.1 Interactive Graphics .. 130
7.2.2 Diagonal Lines and Patterns........................... 131

7.3 Drawing in Color... 133
7.4 Background Color .. 135
7.5 Hiding the Cursor ... 136
7.6 Animation with Graphics .. 137
7.7 Controlling the Speed of Animation 138
7.8 Pausing for User Input ... 139
7.9 Exercises ... 139
7.10 Technical Terms .. 142

8 PIXEL GRAPHICS.. 145
8.1 Pixel Positions in the Execution Window 146
8.2 Plotting Dots in the Execution Window 147
8.3 Changing the Execution Window Size 149
8.4 Drawing Lines .. 150
8.5 Drawing Circles and Ellipses.. 152
8.6 Animation ... 153
8.7 Drawing Arcs.. 154
8.8 Plotting a Mathematical Function 155
8.9 Using Text with Pixel Graphics... 156
8.10 Background Color .. 157
8.11 Sound with Graphics .. 157
8.12 Current Values of Graphic Parameters 158
8.13 Exercises ... 158
8.14 Technical Terms .. 161

9 SELECTION ... 163
9.1 Simple Selection .. 164
9.2 Three-way Selection .. 166
9.3 Multi-way Selection .. 168
9.4 Case Construct .. 170
9.5 Commands for Action .. 172
9.6 Selecting from a Menu of Commands................................ 173
9.7 Exercises ... 174
9.8 Technical Terms .. 176

Table of Contents v

10 STORING DATA ON THE DISK..179
10.1 Data Files on Disk...180
10.2 Input Data from Disk Files ..181
10.3 End-of-file for Data ...182

10.3.1 End-of-file with Strings...................................184
10.4 Reading Lines of Text from a File.....................................184
10.5 Exercises ..185
10.6 Technical Terms ...187

11 HANDLING STRINGS ...191
11.1 Length of a String ...192
11.2 Joining Strings Together...193
11.3 Selecting Part of a String ..194
11.4 Searching for a Pattern in a String....................................197

11.4.1 Counting Patterns in a Word199
11.5 Substituting One Pattern for Another................................200
11.6 Eliminating Characters from Strings201
11.7 Bullet-Proofing Programs..203
11.8 Exercises ..204
11.9 Technical Terms ...208

12 PROCESSING TEXT ..211
12.1 Token-oriented Input ..212
12.2 Inputting a Fixed Number of Characters...........................213
12.3 Line-oriented Input..215
12.4 Files on Disk ...216
12.5 Reading one File and Writing Another..............................218
12.6 Text Formatting...220
12.7 Simple Language Translation ...221
12.8 Exercises ..222
12.9 Technical Terms ...225

13 PROGRAM STRUCTURE...227
13.1 Structure Diagrams...228
13.2 Nested Structures ...229

13.2.1 A Loop Nested Inside a Loop230
13.2.3 More Complicated Nesting of Structures231

13.3 Structure Diagram for elsif ..232

vi Introduction to Programming in Turing

13.4 Declaration of Variables and Constants Inside Constructs235
13.5 Design of Programs ... 236

13.5.1 Controlling Complexity 237
13.6 Exercises ... 238
13.7 Technical Terms .. 239

14 ARRAYS AND OTHER DATA TYPES.. 241
14.1 Array Data Types ... 242
14.2 Manipulating Lists .. 243
14.3 When to Use an Array.. 244
14.4 Initialization of Arrays... 246
14.5 Sorting an Array ... 246
14.6 Related Lists .. 248
14.7 Subrange Data Types .. 250
14.8 Boolean Data Types .. 250
14.9 Tables .. 252
14.10 Named Data Types .. 254
14.11 Exercises ... 255
14.12 Technical Terms .. 260

15 MUSIC .. 263
15.1 Playing Musical Notes.. 264

15.1.2 Resting for a While 266
15.2 Playing a Series of Notes... 266
15.3 Using the Keyboard to Make Music 266
15.4 Animation with Music ... 268
15.5 Exercises ... 272
15.6 Technical Terms .. 273

16 SUBPROGRAMS.. 275
16.1 Functions ... 276

16.1.1 Predefined Functions 276
16.1.2 Type Transfer Functions 278
16.1.3 User-created Functions................................. 279
16.1.4 A String-valued Function............................... 282

16.2 A Procedure with No Parameters..................................... 283
16.3 A Procedure with One Parameter 286
16.4 Variable Parameters in Procedures 288

Table of Contents vii

16.4.1 Procedures to Bullet-proof Input289
16.5 Predefined Procedures and Functions290
16.6 Recursive Subprograms ...292
16.7 Functions versus Procedures ...293
16.8 Exercises ..294
16.9 Technical Terms ...296

17 SUBPROGRAMS WITH ARRAY PARAMETERS.......................299
17.1 Functions with Array Parameters......................................300
17.2 Array Parameters in Procedures301
17.3 Dynamic Formal Parameters ..303

17.3.1 Another Example of a Procedure304
17.3.2 An Example Using a Function and Procedures306

17.4 Local and Global Variables and Constants.......................308
17.5 Maintaining a Sorted List ..311
17.6 Exercises ..315
17.7 Technical Terms ...317

18 RECORDS AND FILES ...319
18.1 Declaration of Records ...320
18.2 Inputting and Outputting Records321
18.3 Arrays of Records ...322
18.4 Binding to Records ...323
18.5 An Example using a File of Records.................................323
18.6 Moving Records in Memory ..326
18.7 Text Files ..329
18.8 Binary Files ...329
18.9 Random Access to Records on Disk331

18.9.1 An Example of Random Access to a Binary File331
18.10 Modification of Records on Disk334
18.11 Deletion of Records on Disk ...343
18.12 Exercises ..345
18.13 Technical Terms ...346

19 ADVANCED TOPICS ..349
19.1 Binary Search ...350
19.2 Sorting by Merging..353
19.3 Files of Records in Linked Lists ..355

viii Introduction to Programming in Turing

19.4 Highly Interactive Graphics .. 359
19.5 Exercise ... 363
19.6 Technical Terms .. 363

20 ADVANCED PIXEL GRAPHICS ... 365
20.1 Advanced Graphics Concepts.. 366
20.2 Drawing a Tilted Box .. 366
20.3 Repeating a Pattern ... 367
20.4 Animation Using a Buffer ... 370
20.5 Bar Charts.. 372
20.6 Pie Charts .. 374
20.7 Graphing Mathematical Equations 376
20.8 Exercises ... 379
20.9 Technical Terms .. 380

21 ANIMATION AND GUIS.. 381
21.1 The Mouse in Turing .. 382
21.2 Animation using the Pic Module 386
21.3 Animation using the Sprite Module 391
21.4 The GUI Module... 395
21.5 Playing Music from Sound Files....................................... 404
21.6 Exercises ... 408
21.7 Technical Terms .. 409

APPENDICES... 413
Appendix A: Simplified Turing Syntax 414
Appendix B: Predefined Subprograms..................................... 423
Appendix C: Predefined Subprograms by Module 431
Appendix D: Reserved Words .. 446
Appendix E: Operators ... 447
Appendix F: File Statements .. 450
Appendix G:Control Constructs ... 451
Appendix H: Colors in Turing.. 452
Appendix I: Keyboard Codes for Turing.................................. 453
Appendix J: ASCII Character Set .. 455
Appendix K: Glossary... 456

INDEX... 472

ix

Preface

This textbook, Introduction to Programming in Turing, is
intended to be used in a first computer science course. It
emphasizes the basic concepts of programming and sets
programming within the larger context of computer science and
computer science within the context of problem solving and
design.

Introduction to Programming in Turing focuses on computing
concepts with the ultimate goal of facilitating the broadest
possible coverage of the core computer science curriculum.

The programming language used in this book is Turing (OOT),
which has an easy-to-learn syntax and is supported by student-
friendly programming environments. By learning the
fundamentals of programming using a language that does not
intrude with a difficult syntax, students can make a relatively easy
transition to any one of the currently popular object-oriented
languages such as C++ or Java.

Overview
This book covers the material in standard curricula for first

courses in computer science.
The list of chapter titles outlines the arrangement of materials.
1. Computing Essentials
2. The Turing Environment
3. Program Design and Style
4. Simple Programs
5. Variables and Constants
6. Repetition
7. Character Graphics
8. Pixel Graphics
9. Selection
10.Storing Data on the Disk

x Introduction to Programming in Turing

11.Handling Strings
12.Processing Text
13.Program Structure
14.Arrays and Other Data Types
15. Music
16.Subprograms
17.Subprograms with Array Parameters
18.Records and Files
19. Advanced Topics
20. Advanced Pixel Graphics
21. Animation and GUIs

Chapter 1 provides an overview of the history of modern
computing, including hardware, software, programming
languages, and number systems. By highlighting a number of key
technological developments, it attempts to place Computer
Engineering today in its scientific and social context. It also
explores some of the current issues in computing such as
employment, privacy, and access to information.

Chapter 2 describes how to use the Turing environment. The
chapter also covers how syntax errors are reported and how they
are corrected.

Chapter 3 introduces some of the key ideas in computer
science. It explains the process of programming and provides
suggestions for good programming style. It also introduces
important design concepts such as the software lifecycle.

Chapter 4 introduces programs that consist of a single line.
Arithmetic operations for both integers and real numbers are
illustrated. Labels are shown to improve the understandability of
results that are output. Programs of several lines are used to
output a series of lines.

Chapter 5 shows how declarations are used to prepare
locations in memory for storing information. Strings and numbers
are input to set values of variables. The use of constants and
comments to improve the program understandability is illustrated.

Preface xi

Prompts are also introduced as a way of informing users what is
expected of them.

Chapter 6 introduces the repetition control structure used in
structured programming. Both counted and conditional loops are
discussed. The exit condition is explained in terms of providing a
means for exiting from any point within the loop. Random integers
are generated to control loop termination.

Chapter 7 shows how characters can be positioned in the
Execution window to create various patterns. Manipulation of
character colors and background colors is also demonstrated.
The use of drawing and erasing a pattern to achieve the illusion
of animation is also introduced.

Chapter 8 explains how to create graphics by plotting in pixel
positions in the Execution window. The instructions for plotting
points, lines, ovals, and arcs to allow the creation of simple line
graphics is illustrated. Graphics with colored backgrounds, closed
curves filled with color and sound are also explored.

Chapter 9 introduces the selection construct. Two-way, three-
way, and multi-way selection are investigated. The case
construct is presented as an alternative to the if..then..elsif..else
structure for programming multi-way selection.

Chapter 10 shows how to redirect a program’s output to a
disk file rather than or in addition to displaying it in the Execution
window. Using the disk file to provide input to a program is also
explained and using the end-of-file automatically placed at the
end of any disk file is introduced. Reading of lines of text from the
disk is shown as an alternative to token-oriented input of string
data.

Chapter 11 outlines methods to: find the length of a strong,
join strings together, locate a substring, search for a pattern in a
string, replace one pattern with another, and eliminate characters
or patterns from strings. A method of preventing improper input to
a program from causing a program crash is shown.

Chapter 12 summarizes various ways of inputting text
material from a file by token, line, or number of characters. Ways
of handling multiple files directly in a program rather than by

xii Introduction to Programming in Turing

redirection are shown. Text formatting is described and a simple
example of language translation is programmed.

Chapter 13 presents flow charts for the three basic control
structures used in structured programming: linear program flow,
repetition, and selection. Charts for nesting of structures and
multi-way selection are also shown. The scope of declarations of
variables and constants is discussed. Top-down program design
is outlined.

Chapter 14 defines the declaration of the array type. The use
of arrays is discussed with examples for sorting lists. The
datatypes: subrange, boolean, and named are given with
examples of their use. Two-dimensional arrays are illustrated by
tables.

Chapter 15 describes how to play musical notes, both
individually and as a series. Arranging the music to accompany
graphic animation in the Execution window is illustrated.

Chapter 16 introduces the two types of Turing subprograms:
functions that produce a value and procedures that produce
some action. Both predefined and user-created examples of
these two types of subprograms are presented. The notion of
parameters, both value and variable, are explained. Type transfer
functions and recursive subprograms are introduced.

Chapter 17 shows how both functions and procedures can
have parameters that are of array type. The correspondence
between formal and actual parameters is presented and the idea
of dynamic formal parameters for arrays introduced. Local and
global variables are differentiated.

Chapter 18 describes the declaration, input, and output for
the data type record. Arrays and files of records are presented
and the movement of records in memory is explained. Text and
binary files are contrasted and the way that random access to
records on disk is obtained is described. An example of
maintaining a binary file of records is presented.

Chapter 19 introduces binary search as an efficient method of
searching in a sorted file. The method of sorting by merging is
detailed . Files stored as linked lists of records are described and
an example of a highly interactive graphic is presented.

Preface xiii

Chapter 20 examines programs for pixel graphic examples
that require the use of more complex mathematics or
subprograms with array parameters. Animation using a buffer is
shown. Methods of displaying statistical information in a graphical
format such as a pie or bar chart are given. Mathematical
functions are plotted.

Chapter 21 shows programs involving animation requiring
interaction with the mouse. Two advanced animation techniques
are described. These include use of the Pic and Sprite modules
available in the OOT library of predefined modules. Another
module which facilitates the creation of graphical user interface
(GUI) elements such as input boxes and buttons, as well as
sound with animation, is introduced.

Flexibility
Introduction to Programming in Turing has been organized to

provide an introduction to the fundamental concepts of computer
science.

Differing course demands and student populations may
require instructors to omit certain chapters or parts of chapters, or
to insert additional material to cover some concepts in greater
detail. For example, instructors wishing to address the historical
information in Chapter 1 after students have more hands-on
programming may choose to begin with a later chapter.

The Turing Programming Language
This book uses the language Turing. One of the main

advantages of using Turing for instruction is that its simple syntax
allows instructors to cover more computer science concepts in
the limited teaching hours available in a course. This is possible
because significantly less time needs to be devoted to teaching
language details.

The Turing language was first developed in 1982 in response
to the need for a programming notation that incorporates good
structuring methods, supports a correctness approach, is easy for
the student to learn, and is suited to interactive programming.

xiv Introduction to Programming in Turing

This language has gained considerable acceptance as a teaching
medium.

The Turing language has undergone extensive enhancement,
in terms of both software support and language notation, since its
inception. In 1992 a superset of Turing, called Object Oriented
Turing (OOT) was created by adding a number of features
including objects, classes, and inheritance.

The programming environment for Turing is particularly helpful
for the learning student. It provides good diagnostic messages for
syntax errors and run-time errors. It provides strong run-time
checking, with automatic detection of uninitialized variables and
dangling pointers. It supports an on-line manual (lookup of
language features by a button press), a directory browser, and, in
the advanced mode, multi-window editing. Versions of the
environment allow the student to use a wide variety of hardware
platforms and operating systems.

Once programming concepts have been learned in Turing, it is
relatively easy to transfer these ideas to new situations. In
particular, data structuring, algorithms, and object-orientation
learned using OOT transfer directly to industrial systems such as
C++ and Java.

Comments
Your comments, corrections, and suggestions are very

welcome. Please feel free to contact us at:

Distribution Manager
Holt Software Associates Inc.
203 College Street, Suite 305
Toronto, Ontario, Canada M5T 1P9
E-mail: books@hsa.on.ca
Phone: (416) 978-6476
USA or Canada Toll-Free: 1-800-361-8324
World Wide Web: http://www.holtsoft.com

Preface xv

Acknowledgments

As the author of Introduction to Programming in Turing it gives
me great pleasure to acknowledge all the help we have had in its
preparation. Chris Stephenson served as our curriculum expert
and edited the text. Tom West provided excellent technical
assistance. Paola Barillaro, Susan Heffernan, and Graham Smyth
provided valuable suggestions for additions to the text. The text
was entered with great care by Inge Weber. Harriet Hume
produced a first-class index to the book. Catharine Kozuch did
our final page check. The cover was designed by Brenda Kosky
Communications.

It was my good fortune again to work with such a cooperative
and competent team.

J.N.P. Hume
University of Toronto

xvi Introduction to Programming in Turing

1

Chapter 1

Computing Essentials

1.1 Introduction

1.2 A Brief History of Computer Hardware

1.3 A Brief History of Programming

1.4 What is a Computer?

1.5 Number Systems: Decimal and Binary

1.6 Hardware and Networks

1.7 Software

1.8 The Social Impact of Computers

1.9 Exercises

1.10 Technical Terms

2 Introduction to Programming in Turing

1.1 Introduction
Computers are now part of our everyday lives. We do our

banking by computer. When we buy something at the grocery
store, the clerk runs the bar code over an optical scanner which
then inputs the price from a computer database. We also use
computers for recreation, for example, we play games that use
simulation and computer animation.

Despite the fact that most of us use computers every day,
many people still do not know exactly what is inside the
computer, what its various parts do, and how they all work
together.

This chapter begins with a brief history of computers and then
describes the parts of the computer and how they function.
Although this chapter discusses the history of computing and the
person most-commonly associated with each new development, it
is important to remember that what appears to be a great leap
forward is often the result of many tiny steps, both forward and
backward, taken not by one, but by many people. Like most
scientific endeavors, advances in computing are usually the result
of work by many people over long periods of time.

1.2 A Brief History of Computer Hardware
The history of computing goes back to the earliest days of

recorded civilization and humankind’s desire to find ways to
calculate more accurately and reason more systematically. The
Greeks, for example, helped to systematize reasoning and
developed axiomatic mathematics and formal logic. The
Babylonians and Egyptians contributed enormously to
computational science by developing multiplication tables, tables
for squares and roots, exponential tables, and the formula for
quadratic equations.

Chapter 1 : Computing Essentials 3

In the late sixteenth and early seventeenth centuries a
number of major discoveries contributed to our ability to perform
complex mathematical operations. These included the
development of Algebra (using letters for unknowns), logarithms,
the slide rule, and analytic geometry.

The development of mechanical machines to assist with
calculations began in 1623 when Wilhelm Schickard designed
and built what is believed to be the first digital calculator. This
machine did addition and subtraction mechanically and partially
automated multiplication and division. About twenty years later
Blaise Pascal developed a gear-based machine that was capable
of performing addition and subtraction. Gottfried Wilhelm Leibniz
(who invented calculus along with Sir Issac Newton) invented a
device called the Leibniz Wheel that did addition, subtraction,
multiplication, and division automatically.

The nineteenth century saw major advances in computation.
Charles Babbage (who was a founding member of the Royal
Astronomical Society in Britain) developed the concepts for two
steam powered machines, which he called the Difference
Engine and the Analytic Engine. The Difference Engine could
perform mathematical computations to eight decimal places.

Although it was never actually built (and would have been the
size of a railway locomotive if it had been) the Analytic Engine
was truly an ancestor of the modern computer. It was to be a
machine capable of performing mathematical operations from
instructions on a series of punched cards. It had a memory unit, a
sequential control, and many other features of a modern
computer.

In 1854 Swedish printer Pehr George Scheutz succeeded in
building a Difference Engine for calculating mathematical tables.
Scheutz’s machine consisted of a memory (which he called a
ÒstoreÓ) and a central processor (which he called a ÒmillÓ). It
operated by a series of punched cards that contained a series of
operations and data. His design was based on the Jacquard
loom which used punched cards to encode weaving patterns.

What might be considered the first computer company was
established in 1896 by Herman Hollerith. Hollerith was a

4 Introduction to Programming in Turing

mechanical engineer who was helping to tabulate the census of
the population of the United States. In 1890 he invented a new
punched card technology which proved much faster than
traditional manual methods of tabulating the results and this
allowed the United States Census Bureau to gather more
information by asking more questions. Hollerith’s company, the
Tabulating Machines Company, later became International
Business Machines, better known now as IBM.

In 1937 a British mathematician named Alan M. Turing made
a significant contribution to computing with the development of an
abstract machine called the Turing machine. During World War
II, Turing was involved in top secret work for the British military
and was responsible for breaking the German code, thus
providing the allied forces with important information about
Germany’s war plans.

In the late 1930s and early 1940s Bell Telephone Laboratories
began building more powerful machines for scientific calculations.
In 1944, Howard T. Aiken, an electromechanical engineer,
collaborated with a number of IBM engineers to design and build
the Mark I computer. This machine could handle negative and
positive numbers, carry out long calculations in their natural
sequence, use a variety of mathematical functions, and was fully
automatic. Rather than punched cards, the instructions for the
Mark I were punched on a paper tape.

In 1945 John W. Mauchly and J. Presper Eckert Jr. designed
and built the first large-scale electronic digital computer from
18,000 vacuum tubes and 1500 relays. This machine was called
the ENIAC (electronic numerical integrator and calculator).
ENIAC was a thousand times faster than the earlier
electromechanical machines. It weighed 30 tons and took up
1500 square feet of floor space.

John von Neumann, who also worked on the ENIAC project,
played a major role in the development of a machine that would
improve on ENIAC in a number of ways. The new machine,
called EDVAC (electronic discrete variable and calculator), was
capable of storing a program in memory and breaking
computations down into a sequence of steps that could be

Chapter 1 : Computing Essentials 5

performed one at a time. EDVAC used binary notation to store
and manipulate numbers whereas earlier machines used decimal
arithmetic. (See section 1.4 for a more complete explanation of
binary.)

In 1951 Mauchly and Eckert developed the UNIVAC I
(universal automatic computer) for the Remington-Rand
Corporation. UNIVAC I was considered by many to be the first
commercially viable electronic digital computer.

In 1952 the University of Toronto purchased a computer from
Ferranti Electric and called it FERUT (Ferranti University of
Toronto). This machine, which replaced the University’s original
calculating punch equipment, used a punched paper tape system
based on the teletype machine. It was actually a copy of the Mark
I developed at the University of Manchester by Alan M. Turing. It
is important to note the large number of women who programmed
for FERUT. These included Audrey Bates, Charlotte Frose, Jean
McDonald, Jean Tucker, and Beatrice Worsley.

In 1953 IBM entered the commercial market with the IBM 701.
This was followed a year later by the IBM 650, which was a
decimal machine designed as a logical upgrade to punched-card
machines.

The next major breakthrough in computer hardware came in
the late 1950s and early 1960s during which the expensive and
often unreliable vacuum tubes were replaced with transistors.
The transistor allowed for the design of computers that were
more reliable and more powerful.

Between 1965 and 1970 the introduction of integrated
circuits, each of which contained many transistors, made the
previous generation of computers virtually obsolete. The wires
connecting the transistors were printed as copper on a sheet of
insulating material. The transistors were plugged into the
insulating sheet, making contact with the wires as required. In
modern computers, the integrated circuit is achieved by a process
of printing metal onto a tiny chip made of silicon which acts as an
insulator. Adding certain other elements to the silicon creates a
transistor. Multiple transistors are be combined to create circuits.

6 Introduction to Programming in Turing

Between 1970 and 1980 the move to large-scale integration
(LSI) and very large-scale integration (VLSI) continued this
miniaturization trend. High-speed semi-conductor technology
has also led to significant improvements in memory storage.

The late 1970s saw the development of personal computers,
the first computers small enough and affordable enough for the
average person to buy. The development of the Altair 8800, the
Apple II, and the IBM PC marked the first steps in what has now
become a world-wide mega-industry.

In the 1980s reduced instruction-set computers (RISC),
parallel computers, neural networks, and optical storage were
introduced.

Generation Year Hardware Development

1 1951-58 vacuum tubes
card or paper tape input/output
magnetic drum memory

2 1959-64 integrated circuits (printed)
magnetic tape I/O
magnetic core memory

3 1965-70 integrated circuits
(photographic)
minicomputers
magnetic disk I/O

4 1970-80 LSI
VLSI
virtualstorage
microcomputers

5 1980+ RISC
parallel computers
optical storage
laser disk

Chapter 1 : Computing Essentials 7

1.3 A Brief History of Programming
The person believed to be the very first computer programmer

was Ada Byron King, countess Lovelace, the daughter of the
English romantic poet Lord Byron. As a woman in the early
1800s, Ada Byron King was largely self-taught in mathematics.
This was both remarkable and necessary since at that time
women were not allowed to even enter a library, let alone attend
university. During her studies, Ada Byron King corresponded with
many of the important English mathematicians of her day and
eventually came to work with Charles Babbage. While Babbage
concentrated on designing the computer hardware, Ada Byron
King became the first person to develop a set of instructions,
which came to be called a computer program, for Babbage’s
Analytic Engine.

As computer hardware evolved from those early prototypes or
models to today’s fast and powerful machines, the ways in which
information and instructions were prepared for the computer also
radically changed. Over time the emphasis shifted from making
the instructions simple enough for the computer to understand to
making them close enough to the spoken language for everyone
else to understand.

Computers such as ENIAC and EDVAC stored information,
both numbers and program instructions, as groups of binary
digits; 0 and 1. Each instruction was often made up of two parts,
a group of bits (binary digits) representing the operation to be
performed, and a group representing the operand, that is, the
machine address of data to be operated on. A program
consisted of a series of such instructions written in this machine
code.

The problem with machine language is that it required
programmers to write very long series of numbered instructions
and to remember the binary codes for the different commands in
the machine’s instruction set. They also had to keep track of the
storage locations (addresses) of the data and the instructions. As
a result, a single program often took months to write and was
commonly full of hard-to-find errors.

8 Introduction to Programming in Turing

A major improvement in programming languages began in the
1950s with the development of symbolic machine languages,
called assembly languages. Assembly languages allowed the
programmer to write instructions using letter symbols rather than
binary operation codes. The assembler then translated these
simple written instructions into machine language. A program
written in assembly language is called a source program. After
the source program has been converted into machine code by an
assembler, it is called an object program.

Assembly languages have a number of advantages when
compared to machine language. They are:

• easier and faster to write,
• easier to debug (to find and correct errors), and
• easier to change at a later date.

But assembly languages also have a major drawback.
Because the communication is taking place at one step up from
the machine, an assembly language is designed for a specific
make and model of computer processor. This means a program
written to run on one computer will not work on another.
Assembly languages are therefore said to be machine oriented.

Symbolic addressing was another interesting programming
language development. Symbolic addressing involves the use of
symbols to represent the assignment of storage addresses to
data. Programmers could thus create symbolic names to
represent items of data, and these names could be used
throughout a program. Programmers no longer had to assign
actual machine addresses to symbolic data items. The processor
automatically assigned storage locations when the program ran.

The development of high-level languages was the next
important step in computing. Like a program written in assembly
language, a program written in a high-level language still needed
to be translated into machine code. High-level languages
included their own translation software to perform this task. The
translating program is called a compiler. Compilers often
generated many machine instructions for each source code
statement. Today, however, many personal computers use an

Chapter 1 : Computing Essentials 9

interpreter, rather than a compiler. A compiler translates the
source program into object code and then executes it; the
interpreter converts each source program statement into machine
language every time the statement is executed. It does not save
the object code.

High-level languages provide a number of benefits. They:

• free programmers from concerns about low-level machine
details such as memory addressing and machine
dependency,

• can be run on different makes of computers,
• are easier to use than assembly languages, and
• are easier for programmers to learn.

Here is an example of a simple instruction which shows the
high-level language, assembly language and binary versions.

High Level Language (Turing)

a := 5

put a

8086 Assembly language program

mov word ptr _a,0005H [_a=824H] c7 06 24 08
05 00

push _a ff 36 24 08

call printf_ [printf=421CH] e8 1c 42

add p,0004H 83 c4 04

Binary program

10 Introduction to Programming in Turing

11000111 00000110 00100100 00001000 00000101 00000000 11111111
00110110

00100100 00001000 11101000 00011100 01000010 10000011 11000100
00000100

Until the late 1950s computers were still being used primarily
for mathematical and scientific calculation. Computers used
binary arithmetic and it was not until machines were developed to
use decimal arithmetic that they were practical for business
calculations. In 1958, J. N. Patterson Hume and C.C. Gotlieb
from the University of Toronto published the first book on using
the computer for business, called High-Speed Data Processing
(McGraw Hill, 1958). Hume and Gotlieb are credited with
publishing many of the computer terms still used today, including:
compiler, data processing, and keyboard. In many ways Hume
and Gotlieb pioneered today’s wide-spread use of computers in
business.

The major problem with programming in the early days was
that it was time-consuming and difficult work, and programs often
did not work. The growing recognition of the potential use of
computers in many fields led to the evolution of modern
programming languages that allowed for programs that were
easier to develop, use, and modify over time.

In 1954 John Backus began leading an IBM-sponsored
committee to develop a new scientific-mathematical programming
language. In 1957 this committee introduced a new high-level
language called FORTRAN (Formula Translator) for the IBM 704
computer. FORTRAN gained wide acceptance, especially among
scientists and statisticians because of its usefulness for
expressing mathematical equations and over the years many
versions of FORTRAN have been developed.

As more businesses began to appreciate the potential for
computers, new languages were developed to meet their
particular needs. In 1961, Grace Murray Hopper helped to invent
COBOL (Common Business-Oriented Language). COBOL was
designed to process business data and for many years it was
used heavily by the insurance and banking industries among

Chapter 1 : Computing Essentials 11

others. The language ALGOL was also developed by an
international committee for scientific use.

 At the same time John McCarthy at the Massachusetts
Institute of Technology developed LISP was designed to support
research in the field of artificial intelligence (AI).

BASIC (Beginners All-purpose Symbolic Instruction Code)
was developed by John Kemeny and Thomas Kurtz beginning in
1964 at Dartmouth College. Kemeny and Kurtz wanted to
develop a language that undergraduate students could easily
learn and use on a time-shared basis on a large computer.
Although the original BASIC had a well-defined syntax (the
grammar rules of a programming language), over the years many
different non-compatible versions have been developed, so that
today, there are many ÒdialectsÓ of BASIC.

LOGO was developed in the 1960s by Seymour Papert at the
Massachusetts Institute of Technology. Papert’s goal was to help
young children explore a mathematical environment by using an
on-screen ÒturtleÓ to draw figures and create simple animations.

 In 1970, Pascal (named after the seventeenth-century
French mathematician Blaise Pascal) was developed by Niklaus
Wirth at the Federal Institute of Technology in Switzerland. One
of the major benefits of Pascal over BASIC, was that it was
designed to support the concepts of structured programming.
In the case of earlier languages such as BASIC, a program's
structure could be quite complex and trying to follow the
sequence of execution (how a program runs) was like trying to
untangle a plate of spaghetti.

At the heart of structured programming is the idea that within
a program there are groups of statements that are used to control
the flow of information. These groups, often referred to as
control constructs, are:

• linear sequence: where statements are executed one after
the other in the order in which they are written,

• repetition: where a group of statements is to be executed
repeatedly, and

12 Introduction to Programming in Turing

• selection: where one group of statements is selected for
execution from a number of alternatives.

Within a structured program, these control constructs are
organized so that the program can be read from top to bottom.
Each structure allows only one entrance and one exit. Indenting
the instructions in a program printout helps someone looking at a
program to understand its logic more easily.

The term structured programming now relates not just to
program control logic, but to how programs are designed and
developed. Today when people speak of structured
programming, they are often referring to a systematic way of
analyzing computer problems and designing solutions called top-
down programming. In top-down programming, a problem is
broken down into a series of smaller problems, each of which is
then solved. Once the smaller problems are solved, the solutions
are combined to solve the larger problem.

In the early 1970s Dennis Ritchie and Brian Kernighan of Bell
Labs developed a programming language they called C. This
language allowed for easy access to the hardware and was very
efficient. C was designed to program large systems and so it
became a favorite programming language of systems
programmers. It was used to produce the UNIX operating system.

In 1975 the United States Department of Defense began a
series of studies intended to support the development of a new
programming language to be used by computer vendors and
military programmers. The language, called Ada (after Ada Byron
King, countess Lovelace), was released by CII-Honeywell-Bull in
1979 and was used extensively by the United States military.

Year Person Developed

1800s Ada Byron first computer programs

1954 John Backus FORTRAN

Chapter 1 : Computing Essentials 13

1960s Grace Murray Hopper

John Kemeny

Thomas Kurtz

Seymour Papert

COBOL

BASIC

LOGO

1970s Niklaus Wirth

Dennis Ritchie

Pascal

Ada

1980s Brian Kernighan
Dennis Ritchie

Ric Holt
James Cordy

C

Turing

1990s Bjarne Stroustrup

James Gosling

C++

Java

Turing (named after Alan M. Turing) was developed by Ric
Holt and James Cordy at the University of Toronto in 1984. Like
Pascal before it, Turing was designed to suit personal computers,
where the instructions are typed in directly. Turing was more
powerful than Pascal and was designed to have a mathematically
specified syntax (preventing the development of numerous
incompatible versions) and that its syntax was much easier to
understand.

1.3.1 A New Way of Organizing Large Programs

As computer programs and the tasks they perform have
become larger and more complex, programmers, scientists, and
academics have worked to find new ways of thinking about,
developing, and maintaining these programs over time. The term
programming paradigm refers to the set of ideas which forms
the basis of a particular way of programming.

The move from the unstructured to structured programming
paradigm (see previous section) was a significant improvement in

14 Introduction to Programming in Turing

how programs were written and developed. By following the rules
associated with structured programming, programmers made the
logic of their programs easier to follow. This meant that it was
easier to locate and fix errors and to make changes to those
programs as needed.

But the reality is that even structured programs are often time-
consuming to write, hard to understand, and inflexible in that they
are designed for a specific task.

Object-oriented programming is a way of designing and
writing programs based on the concept that a program can be
created as a collection of objects which work together. Each of
these objects is a set of data and methods that operate on this
set of data. The details of how the data is stored and how the
methods work are hidden from the user.

An object is created from a class from which many such
objects can be created. One class can inherit (or borrow)
features from another class. Classes which perform specific tasks
can also be reused in other programs, thus speeding up program
development. Current object-oriented programming languages
include C++ (developed by Bjarne Stroustrup), Java (developed
by James Gosling), and Object Oriented Turing (developed by
Ric Holt).

1.4 What is a Computer?
Now that we have looked at how computers have evolved, it

makes sense to look more closely at what exactly is meant by the
term computer. A computer is a machine that takes in
information, transforms it, and outputs it in a different form.
Information used by the computer is called data. Data can take
many forms. It can be text, numbers, graphics, and even sounds.
More specifically, information put into the computer is called
input. Information that comes out of a computer is called output.

While computers themselves can be very complex, there is a
very simple model that represents how all computers work. There

Chapter 1 : Computing Essentials 15

must be something to take in information, something to process
it, something to store it, and something to output the result. Here
is a simple model of a computer.

Input Output

Memory

Processing

Figure 1.1 Simple Model of a Computer

The part of the computer performing the input function
receives information in the form of data or programs. Common
examples of input devices include keyboards, disk drives,
scanners, and the mouse.

One of the things that can be very confusing is that, while
many kinds of devices (microwave ovens, bathroom scales,
toasters, even singing birthday cards) use computer technology
such as computer chips and memory, they are not really general
purpose computers because they can only be used to perform
the task for which they have been built. They cannot be
programmed to perform a variety of tasks. Computers, however,
are defined by their ability to process information in a variety of
ways.

1.4.1 The Central Processing Unit

The internal part of the computer that processes information is
called the Central Processing Unit or CPU. The CPU does the
work and determines the order in which operations are
performed. There are three main sections of the CPU:

• the primary storage section,
• the arithmetic-logic section, and

16 Introduction to Programming in Turing

• the control section.

The primary storage section or main memory is used four ways:

• the input storage area collects data that has been fed in until it
is ready to be processed,

• the program storage area holds the processing instructions,
• the working storage space holds the data being processed

and the intermediate results of that processing, and
• the output storage area holds the final results of the

processing operations until they can be released.

The arithmetic-logic section is where all calculations are
performed and decisions are made; in other words, where the
data held in the storage areas is processed. Data moves from
primary storage to the arithmetic logic unit and back again to
storage repeatedly until processing is completed. Once the
processing is completed, the final results are sent to the output
storage section and from there to an output device such as the
computer screen (also called a monitor) or the printer.

The control section maintains the order of the entire system
by directing the data to the appropriate places. It is the traffic cop
of the CPU. When processing begins, the control section
retrieves the first instruction from the program storage area. The
control section then interprets the instruction and signals the
other sections to begin their tasks. Program instructions are
selected and carried out in sequence unless an instruction is
encountered to tell it to jump to another instruction or until the
processing is completed.

1.4.2 Memory

Over the years the ways in which computers store information
have changed remarkably. Initially information was stored using
vacuum tubes. Vacuum tubes, which resemble light bulbs, are
glass cylinders containing several filaments. A later generation of
computers stored information using magnetic core memory,
which consisted of donut shaped rings that were magnetized in

Chapter 1 : Computing Essentials 17

one direction or another. Today, main memory is usually on
silicon chips (see Section 1.5.2) and the time required to access
information in main memory (access time) is measured in
nanoseconds (billionths of a second) instead of the microseconds
(millionths of a second) magnetic core memory required.

Main memory is broken down into two main types, RAM
(Random Access Memory) and ROM (Read Only Memory). RAM
stores programs, data, or information from input and output
devices. This stored information can be manipulated by computer
programs or input from or output to devices such as printers and
scanners. RAM memory is lost when the computer is shut off.
Saving RAM memory in secondary storage is essential if this
information is required later. Creating a back-up (saving a
second copy of the same information) is a good programming
practice.

Memory Conversion

1 bit either 1 or 0

1 nybble 4 bits

1 byte 8 bits or 2 nybbles

1 kilobyte 1000 bytes (approx.)

1 megabyte 1000 kilobytes

1 gigabyte 1000 megabytes

1 terabyte 1000 gigabytes

ROM on the other hand stores information that the system
needs in order to function. The contents of this memory are
recorded at the time the computer is manufactured and are not
lost when the computer is shut off, if there is an interruption in
power, or if an application stops working properly (referred to as
ÒcrashingÓ).

In early personal computers, the overall amount of memory
was very limited. For example, when the Commodore Pets were

18 Introduction to Programming in Turing

introduced the total RAM was 8K and many people could not
imagine needing any more memory than this. Today, however,
personal computers contain far more RAM and sizes are now
measured in gigabytes (millions of kilobytes).

Information that needs to be stored for future use can be kept
in secondary storage devices such as floppy disks, hard drives,
and Zipª drives.

1.4.3 Output Devices

Once data is input and processed it often needs to be output
in various forms. When the computer is used for numerical
computation, for example, the numbers are input, then
processed, and the result is output. Output devices can include
monitors (the computer screen), printers, and synthesizers. Over
time the technology underlying computer monitors has changed
dramatically, and these changes have often been driven by the
need for higher resolution especially for computer graphics and
smaller, more portable computers. Different types of display
technologies include CRTs (cathode ray tubes), LCDs (liquid
crystal), and gas plasma displays.

1.5 Number Systems: Decimal and Binary
At its most basic, a computer is a machine that processes

information, but before you can understand more explicitly how it
does that, you have to know something about how that
information is expressed at the machine level. As mentioned
earlier in this chapter, machine language is based on the binary
number system rather than the decimal number system. We will
now look more closely at both of these systems and how they
differ.

When human beings count, they use a number system which
is based upon combinations of ten different digits. These are:

0 1 2 3 4 5 6 7 8 9

Chapter 1 : Computing Essentials 19

All numbers are combinations of these symbols. This number
system is called the decimal number system or base 10 since it
is based on a set of ten digits. At the machine level, however,
computers use only combinations of two different digits to
represent all information that can be stored. These are:

0 1

This two-digit system is called the binary number system. It
is also called base 2. When people need to communicate with
computers at their most fundamental (machine) level, they need
to be able to convert between binary and decimal representation.

An important aspect of each number system is that it has
place value. The base 10 number (the decimal number) 987 has
7 in the units column, 8 in the tens column, and 9 in the hundreds
column. Moving from the right column to the left, each column is
multiplied by 10.

9 8 7

Tens (10)

Units (10)

2

1

0

Hundreds (10)

Figure 1.2 Base 10

Therefore the base 10 number 987 equals

9 x 102 + 8 x 101 + 7 x 100

20 Introduction to Programming in Turing

In mathematics 100 equals 1. The figures in superscript
(smaller raised figures) represent the number of times the base
number is multiplied by itself.

The binary number system also has place value. The binary
number (base 2) 1101 has the right-most 1 in the units column,
the 0 to its left is in the twos column, the 1 in the 2 squared (or
fours column), and the left-most 1 in the 2 cubed column (eights
column). Each column is multiplied by 2, moving from the right to
the left.

Fours (2)

01 1

Twos (2)

Units (2)

2

1

0

1

Eights (2)
3

Figure 1.3 Base 2

For example, the binary number 1101 equals

1 x 23 + 1 x 22+ 0 x 21+ 1 x 20 or 8 + 4 + 0 + 1 = 13

therefore

11012 = 1310

In mathematics 20 equals 1. The figures in subscript (smaller
lowered figures) represent the number system being used.

All base 10 numbers have an equivalent binary number.
Understanding the decimal and binary number systems is
essential in order to understand how computers work.

Here is a chart showing the decimal and binary version of the
first sixteen natural numbers in both systems.

Chapter 1 : Computing Essentials 21

Decimal or
Base 10

Binary or
Base 2

Decimal or
Base 10

Binary or
Base 2

0 0 8 1000

1 1 9 1001

2 10 10 1010

3 11 11 1011

4 100 12 1100

5 101 13 1101

6 110 14 1110

7 111 15 1111

1.6 Hardware and Networks
Once you understand what computers are and how they store

information it is important to look more closely at the actual
components or parts that make up a computer system.

When you hear people talk about computers they often talk
about hardware and software. By hardware, they mean the
electronic and mechanical parts of the computer. Computer
hardware can include things such as:

• the hard disk, which stores programs and data,
• the keyboard, CD ROM, and the mouse which are used for

inputting data,
• monitors, printers, and speakers which are output devices,
• light pens and barcode readers which are input devices, and
• disk drives and modems which can be either input or output

devices.

The term peripheral refers to the many devices which can be
attached to the computer. These peripherals often include

22 Introduction to Programming in Turing

printers, scanners, speakers, modems, and joysticks. Their
primary purpose is to either provide input to, or output from the
computer. Printers, for example, provide textual output from a file
while barcode readers are used to scan information such as a
price or part number into the computer. In later chapters we will
investigate a variety of peripherals in more detail.

Figure 1.4 shows what a standard hardware setup might look
like.

Figure 1.4 Standard Computer Hardware Setup

This setup includes input devices such as the mouse,
keyboard, and CD-ROM and output devices such as speakers
and the printer. The disk drive and modem are unique because
they can be used for both input and output. The disk drive can be
used to store and retrieve files from floppy disks which can be
transferred from computer to computer, while modems send and
retrieve information via telephone or cable lines.

 Figure 1.5 provides a simplified illustration of some of the
internal components of the computer.

Chapter 1 : Computing Essentials 23

Expansion
Slots

Power
Supply

Disk
Drive

Hard
Drive

RAMCPU

Figure 1.5 Computer Components

Many computers are also connected to networks which allow
the computers (and their users!) to communicate and share
information and resources. Networking facilitates two-way sharing
of software and hardware locally or globally. Computer networks
can take many forms, depending upon the type and number of
computers in the network and the distance over which they must
be linked. The hardware on the network may include: personal
computers, mainframes, supercomputers, printers, fax machines,
navigational control systems, and interactive entertainment
centers. The software, however, will always include application
software, desktop software, and networking operating systems.

The benefits of networking computers are enormous.
Geographically remote areas can be connected to share
information. Without actually transferring an entire file to all the
people involved, several people can simultaneously share large

24 Introduction to Programming in Turing

files. Also, within a networked environment the information
generated by a single user can be shared world-wide
instantaneously.

For example, a large company with a number of sales offices
in different cities can use its networked computers to maintain a
single file with all of their customer information. The sales people
at each office would be able to get information from this file and
add information to it without having to have a separate copy of
the entire file on their computers. In this way, every sales person
would have access to the most up-to-date information for the
entire company. The problem of keeping the separate lists in
each office current would be eliminated. And finally, fewer
computer resources would be needed because there would be
one shared file rather than many separate files. In this way,
networking enables faster, more precise communication which
should translate into greater accuracy, productivity, and cost
savings.

Networking also allows different types of computers to
communicate. Users choose specific computers and operating
systems for many reasons. For example, a particular application
might be better suited for a Macintosh than an IBM PC.
Networking allows users to share resources even when their
systems are different.

Users on a network can also share physical resources. Many
individual computers can share one scanner, printer, or other
expensive piece of hardware. Sharing hardware significantly
reduces the expense of running a system.

1.6.1 Different Kinds of Computers for Different Needs

The use of computers to perform an ever-increasing number
of jobs has led to the development of various kinds and sizes of
computers. The largest computers are called supercomputers.
These computers are used primarily by government, industry, and
research organizations for projects which require huge amounts
of computing power, often for fast calculation purposes.

Chapter 1 : Computing Essentials 25

Supercomputers have multiple CPUs and are known for their
processing speed.

Many large businesses such as banks, airlines, insurance
companies, and law enforcement agencies use mainframe
computers to store and manipulate large amounts of information.
Mainframe computers are capable of multiprocessing, that is,
running many processes simultaneously. Their main advantage is
the ability to store vast amounts of information and later to
distribute it.

Mainframe computers are often used in a network of medium-
sized computers called minicomputers. A minicomputer, despite
its name, is a medium-sized computer. The most common
computer, however, is the personal computer. It is also know as
the microcomputer or desktop computer. This computer is
designed for a single user and consists of a CPU, input/output
units, and a power supply.

As more and more people are using their computers at work,
at home, and on the road, laptop computers have become
increasingly popular. These computers have been designed to
provide most of the same features as a desktop or personal
computer, but in a more portable size. These computers are often
characterized by a smaller keyboard and a flip-top lid containing a
monitor or screen.

One of the newest computers sold commercially is the hand-
held or palmtop computer. These extremely small computers
are often used as personal organizers, word processors, or for
accessing local or global telecommunications such as electronic
mail, commonly called email.

As computer power of even the smallest computers has
increased, the distinctions between these kinds of computers
have begun to blur, and it is important to note that the size of the
computer is no longer an indication of how powerful or how fast it
is.

1.6.2 The Silicon Chip

26 Introduction to Programming in Turing

Computers today, regardless of what they are used for, are
smaller, faster, and less expensive than they were twenty years
ago. One of the main reasons for this is the development of the
silicon chip. The importance of this technology to the computing
industry can be seen in the fact the area in California where there
is a high concentration of computing companies is often referred
to as ÒSilicon ValleyÓ.

Silicon is found in common substances such as sand, but has
unique properties which make it especially useful in the
manufacturing of electronics equipment. While silicon alone acts
as an insulator, when a line of metal is deposited on it, that metal
acts as a wire conductor which transmits electric current. If the
silicon is impregnated with certain other elements, it acts as a
semi-conductor. These semi-conductors are used to create
transistors. A transistor is an electronic switch that conducts
electric current under certain conditions.

A series of switches and conducting wires that perform a
specific function is called a circuit because it controls the path
over which electricity can flow. A silicon chip is made up of a
large number (potentially millions) of transistors which are in turn
organized into circuits. Silicon chips are often called integrated
circuits because each chip can contain many different circuits.

The silicon chip has also increased the speed at which
computers can perform tasks, resulting in computers that perform
an operation in a trillionth of a second, performing millions of
calculations, or processing tens of thousands of instructions in a
second.

Because silicon chips are extremely small, they can be used
in many products. A silicon chip less than a centimeter (an eighth
of an inch) square can store millions of bits of information and
perform the work it once would have taken a room full of
computers to perform. Many common products such as watches
now contain silicon chips. Specialized chips are also used in
many larger products such as cars, VCRs, microwave ovens, and
washing machines.

Every computer from a supercomputer to a laptop computer
contains silicon chips. Because modern digital computers tend to

Chapter 1 : Computing Essentials 27

isolate the user from the actual silicon chips that control the
computer’s functions, each containing huge numbers of
elements, very few users actually understand the underlying logic
of computer chips.

1.7 Software
The term software refers to all of the instructions that make

the hardware work. Within the computer there are many different
levels of software. In this section we will briefly examine four
distinct kinds of software:

• operating systems,
• programming environments, and
• applications.

1.7.1 Operating Systems

The operating system is a collection of programs that the
computer uses to manage itself and use its resources efficiently.
Operating systems you might have already heard of include:
UNIX, Linux, Microsoft Windowsª, DOSª, and MacOSª.

The operating system performs tasks such as accepting input
from the keyboard and managing input and output between the
computer and external devices (peripherals). Some of these
devices such as printers are not part of the computer but can be
used to send information to or receive information from the
computer.

1.7.2 Programming Environments

 In order to write your own program you need to use a
programming environment. A programming environment is a
set of tools that includes an editor for entering and changing the

28 Introduction to Programming in Turing

program, a compiler or interpreter for translating programs into a
machine language that the computer can understand, and
sometimes a debugger for locating and fixing errors.

As noted earlier in this chapter, many different programming
languages have been developed, each with its own set of
features. Many of these programming languages now include
their own programming environments.

 1.7.3 Applications

Software can refer to a single computer program that does
one task or a collection of programs, called an application, that
perform many of the same kinds of tasks. Some common
examples of large applications include:

• computer games,
• word processors,
• graphics packages,
• virtual reality software,
• presentation software,
• web browsers,
• database management systems, and
• spreadsheets.

Computer games are among the most popular software
applications and are available from the simplest tic-tac-toe games
to highly complex role playing games with advanced graphics,
animation, and sound.

Word processing software enables the user to create, edit,
and save textual documents. Almost all word processing software
provides features for editing (cut and paste) and formatting (font
styles and font sizes, tab bars, and headers and footers) text.
Most also include an additional set of tools such as a spell
checker, grammar checker, word counter, and a thesaurus.

Graphics applications provide many of the same basic
functions as word processors, except that they are designed for

Chapter 1 : Computing Essentials 29

creating and manipulating images rather than text. There is a
wide range of graphics packages, from simple paint programs
that allow the user to create simple shapes in different colors to
advanced tools that allow images to be created, modified, and
displayed.

Virtual reality packages are programs that use computer-
generated images, text, and sound to imitate real-world events.
Simulation software creates a virtual environment which the user
can observe and interact with. The aerospace industry, for
example, uses flight simulators to test new aircraft designs before
the product is released. Using simulation software to ÒvirtuallyÓ
fly the aircraft helps the designers identify and correct potential
problems before the plane is built. This saves time, money, and
possibly even lives. The nuclear power industry also uses
simulation software to demonstrate the operations of a nuclear
power plant and simulate what might happen in the event of
natural disasters (such as earthquakes). In this way, simulation
software can be used to test safety and emergency procedures
without requiring a real emergency. Simulation software is used in
many fields, such as microcomputer design, global climatic
studies, agricultural research, and black-hole research.

The term presentation software refers to an application that
helps the user organize information so that it can be used for
presentations or display. These applications often provide a set of
templates or example formats into which the user can insert the
information she or he wishes to display. Imported text can then
be formatted in a variety of different styles. Most presentation
packages allow the user to import graphical images, sound, and
video. If the user has access to the appropriate display hardware
and software, she or he can create a computer-based
presentation run from either the keyboard or a hand-held device.
If no such equipment is available, the presentation can also be
printed directly onto acetates (clear plastic) to be displayed using
an overhead projector.

Web browser applications allow the user to access, view,
and download text and graphics from the World Wide Web. The
Internet is a vast and complex network of computers which
provides storage space for textual and graphical information

30 Introduction to Programming in Turing

which can be shared. The term World Wide Web refers to
specific kinds of files or collections of files where information is
organized and displayed in hypertext. Hypertext is a non-linear
organizational format. Rather than proceeding in a straight line
from beginning to end like a book, it organizes the information in
layers. In order to access the Web, users must be able to log into
a computer network linked to the Internet, in other words they
need an Internet account. Many large organizations such as
corporations and universities provide accounts to their
employees. Individuals with a home computer can also purchase
an account (often on a monthly basis) from an Internet Service
Provider (ISP) or through a telephone company or cable
television provider.

Database applications help users store, organize, and use
numbers, text and other forms of data. Databases tend to be
used for more text-rich storage such as customer information.

Spreadsheet applications also help users store, organize,
and use numbers and text spread out in rows and columns.
Spreadsheets usually provide features for manipulating numbers
and performing calculations and so are used for financial plans,
such as budgets.

1.8 The Social Impact of Computers
The impact of computers on our society is profound. Many

books have been written on the social aspects of technology. In
this section we will briefly examine some of the positive and
negative impacts of computing.

The evolution of computer hardware and software has created
a revolution in our society and can in some ways be seen as the
latest extension of the Industrial Revolution. During the Industrial
Revolution increasing mechanization led to the growth of industry.
Since industry tended to concentrate in urban (city) rather than
rural (country) areas, more and more people began moving into
cities to work in factories and businesses. This has also been the

Chapter 1 : Computing Essentials 31

case with the computer revolution. Computers are now part of our
everyday life and so in some subtle and not so subtle ways they
affect how we work, play, and live.

1.8.1 Employment

One of the primary benefits of computing is that it has created
thousands of new job opportunities. There is almost no industry
now that does not require the skills of programmers. At the same
time, the computerization of many traditional manufacturing
industries, such as the auto industry, has led to the displacement
of many workers. The growing use of computers has also
eliminated many of the jobs formerly performed by unskilled
workers or skilled tradespeople.

Increased computerization has allowed businesses,
industries, and governments to streamline their operations,
increase productivity, and provide services more efficiently.
These improvements include easier access to goods and
services such as Internet shopping, more reliable billing
procedures, and faster and more detailed access to customer
information. People in every profession can share information
more easily. For example, scientists in different parts of the world
can share their findings through email. They can also turn over
the boring jobs, such as performing time-consuming calculations,
to computers, thus increasing job satisfaction and improving their
opportunity to find and share solutions.

At the same time, however, many people feel that computers
are taking the human touch out of everything by making all our
transactions so impersonal. Now, instead of dealing with people
such as tellers in banks and service people at gas stations, we
are dealing with machines. Instead of being people, we are
personal identification numbers (pin), social insurance numbers
(SIN), and account numbers. After a while this lack of human
contact becomes extremely frustrating. The mayor of the city of
Toronto, for example, banned voice mail from city offices
because he said it was making the people of the city feel there
were no real people to help them.

32 Introduction to Programming in Turing

1.8.2 Privacy

Computer telecommunications such as email have opened
the windows of communication world-wide. Through email,
students in Canada and students in Australia can share
information about themselves and their communities, and thus
come to understand each other better. Many people who may be
isolated by geography or disability can find others to
communicate with via a chat room or listserv. For example, deaf
people from around the world use a listserv called DEAF-L to
discuss issues of concern to their community and to share
information about available resources.

While computer technology has made it easier for us to gather
information, it has also led to invasion of people’s privacy.
Information about every aspect of a person’s life can be collected
and sold to businesses and organizations without the person
agreeing or even knowing. For example, grocery stores which use
optical scanners to calculate the cost of food items and let
customers use bank cards to pay can collect information about
what kinds of products people buy and provide that information to
the people who make or advertise those products. There is also
growing concern about the availability of personal information
such as medical and financial records.

1.8.3 Access to Information

The Internet is a tool people can use to gain access to many
different sources of information on any topic imaginable. One
problem, however, is that some people take everything they find
on the Internet at face value. They do not consider that the
people who are making that information available might be ill-
informed or trying to mislead.

There is a saying that Òon the net, everyone is an expertÓ.
What this means is that while everyone may seem to be an
expert, some people simply do not know what they are talking
about. When viewing material on the Internet, it is important to
determine the validity of the information. Readers should consider

Chapter 1 : Computing Essentials 33

whether the person posting the information is likely to have the
required knowledge and whether he or she might benefit from
presenting false or misleading information. This does not mean
that you should always trust someone of high social status, such
as a university professor, while mistrusting a student. It simply
means that you should always be careful to evaluate information
based on its source.

There is also a debate about just how much of Òthe wrong
kindÓ of information is available on the Internet. As the media
have frequently reported, there is pornographic material available
to those who go looking for it. For this reason many schools use
some kind of blocking software on their networks to prevent
students from gaining access to such information. Many
companies also have very strict policies about firing employees
who are caught using their office computers to download or store
pornographic material.

Again, it is up to the user to access information in a
responsible way. You should also keep in mind that no matter
how clever you are, it is always possible for someone to track
your use of a computer. Virtually every activity on a network is
logged somewhere in the system and it is a relatively simple task
for the network administrator to find out where you have been
and what you have been doing.

34 Introduction to Programming in Turing

1.8.4 Leisure Activities

For many people, computers have opened up a whole new
realm of leisure activities. People can use their computers to
create new computer programs, to play games, to use computer
applications to master new skills, or to chat with people anywhere
in the world. They can also take on-line courses. Unfortunately,
like many other fascinating hobbies, computers can take over
people’s lives if they fall victim to computer addiction. On many
university campuses, computer addiction is a major cause of
failure, as students become so immersed in their hobby that they
neglect their studies. Among many adults, home computers have
also been known to put stress on their important relationships.
Time on the computer just seems to fly by and somehow ÒI’ll be
there in ten minutesÓ turns into hours.

The most obvious sign of computer addiction is that addicts
neglect other important aspects of their life such as family, work,
friends, school, and sleep. The key to avoiding addiction is to
ensure that, despite temporary indulgences, time spent at the
computer is not time stolen from other important activities and
people.

1.8.5 Illegal Activity

Like most human inventions, computers can be used in good
ways and in bad ways. As computer use is increasing, so is the
use of computers to commit criminal offenses. Computers are
now being used to create illegal credit cards, to defraud banks,
and to steal information from businesses. In this way, they have
given rise to a new breed of white-collar criminals.

A new area of computer crime, called software piracy,
involves people duplicating, using, and sharing, information
(textual, graphical, and sound) and applications to which they
have no right. Many people do not realize that it costs literally
hundreds of thousands of dollars to create a software application.
When people copy that application and share it with their friends,

Chapter 1 : Computing Essentials 35

they rob the people who spent the time and money to develop
and distribute it.

In order to try to protect themselves from software piracy,
many software companies attempt to protect their products with
registration codes. While such measures can prove annoying to
users, they are often the only way the company can protect itself
from unauthorized duplication and distribution.

Another way that software companies are fighting back is
through a process called a software audit. If a software vendor
believes that a company, organization, or institution is using its
software illegally, it can demand that the company determine
every single software product it uses and prove that it is using it
legally (has purchased the right to use it).

Many people do not realize that it is illegal to use copyrighted
material without the permission of the copyright holder. People
who post images, video, or sound on their web pages without
finding out who they really belong to run the risk of being charged
with copyright infringement.

1.8.6 Computers: Good or Bad?

Like most objects, computers themselves are neither good nor
bad, but they can be used by good or bad people to do good or
bad things. As responsible human beings we all have an
obligation to look carefully at how we use technology. As a caring
society we need to question whether the way in which we use our
tools makes the world a better place for all of us, or just a more
profitable place for some and a worse place for most.

Like most technologies, computers have the potential to
improve life for everyone who owns one. At the same time, they
have the potential to leave those who do not have access to
these resources further and further behind.

36 Introduction to Programming in Turing

1.9 Exercises
1. Describe the contribution to the development of modern

computers made by the following people.

(a) Charles Babbage
(b) Pehr George Scheutz
(c) Herman Hollerith
(d) Alan M. Turing
(e) Howard T. Aiken
(f) John W. Mauchly and J. Presper Eckert Jr.
(g) John von Neumann
(h) Charlotte Frose
(i) Ada Byron King
(j) Grace Hopper

2. List the five generations of computers along with two
significant features of each generation.

3. Define the following:

(a) computer programming
(b) programming language
(c) syntax
(d) debug

4. Explain two differences between machine code and
assembly language.

5. List three advantages of assembly languages over machine
code.

6. Differentiate between a compiler and an interpreter.

7. List five high-level programming languages.

8. State one feature of each of the five high-level languages
identified in the Exercise 7 and list the most important
person(s) involved with each language.

Chapter 1 : Computing Essentials 37

9. Machine code and assembly languages are both examples
of Òlow-level languages.Ó List five advantages high-level
languages have over low-level languages.

10. Define programming paradigm.

11. Explain the main differences between two programming
paradigms.

12. Draw a simple model of a computer.

13. What does the acronym CPU stand for?

14. State the main function of the CPU.

15. State the three main sections of the CPU.

16. Explain the functions of each of the three sections of the
CPU.

17. Explain the significance of each of the following terms
relating to computer memory.

(a) main memory
(b) RAM
(c) ROM
(d) vacuum tubes
(e) magnetic core
(f) silicon chip
(g) back-up

18. The binary number system is fundamental to really
understanding how a computer functions. Explain.

19. Explain the difference between hardware and software.

20. List one significant feature (besides size) of each type of
computer.

(a) supercomputer
(b) mainframe
(c) minicomputer
(d) personal computer

38 Introduction to Programming in Turing

(e) laptop
(f) palmtop

21. What is a silicon chip?

22. List three features of silicon chips.

23. List three types of software and one feature of each type.

24. Computers can be used to obtain personal information
without your knowledge. Explain.

25. Computers have created many new job opportunities.
Explain.

26. Computers have eliminated many jobs. Explain.

1.10 Technical Terms
access time
Ada
algorithm
Analytic Engine
application software
artificial intelligence
arithmetic logic section
assembly language
back-up
base 2
base 10
BASIC
batch processing
binary notation
binary number system
binary representation
bit

C++
central processing unit

(CPU)
classes
circuit
control constructs
COBOL
coding
control
compiler
computer game
computer programming
computer program
computer screen
conductor
control construct
copyright infringement

Chapter 1 : Computing Essentials 39

data
database
decimal number system
debug
debugger
Difference Engine
disk drive
download
editor
electronic mail (email)
execute
external documentation
FORTRAN
graphics package
hacker
hand-held/palmtop

computer
hard disk
hardware
high-level language
hypertext
information technology
inherit
input
input device
input storage area
insulator
integrated circuit
interactive computing
internal documentation
Internet
interpreter
Internet Service Provider
invalid data

Java
keyboard
laptop
Large-scale integration
linear sequence
LISP

40 Introduction to Programming in Turing

Logo
machine language
machine oriented
magnetic core memory
main memory
mainframe computer
maintaining
microcomputer/desktop

computer
microprocessor
minicomputer
mouse
network
object oriented

programming
Object Oriented Turing
object program
operating system
output
output device
output storage area
Pascal
peripheral
personal computer
place value
presentation software
primary storage
printer
problem solving
program storage
programmer
programming

environment

programming language
RAM
reduced instruction-set

computing (RISC)
repetition
ROM
secondary storage device
selection
silicon
silicon chip
simulation software
software
software audit
software piracy
source program
spreadsheet
structured programming
subscript

Chapter 1 : Computing Essentials 41

supercomputer
switch
symbolic addressing
syntax
top-down programming
transistor
Turing
UNIX
vacuum tube
valid data
very large-scale

integration (VLSI)
virus
web browser
well-designed program
word processor
working storage space
World Wide Web

43

Chapter 2

The Turing
Environment

2.1 Introduction

2.2 The Editor Window

2.3 Saving Programs on Disk

2.4 Running Programs

2.5 Indenting Programs and Syntax Coloring

2.6 Starting and Stopping the Environment

2.7 Opening an Existing Program

2.8 Searching for Text in a File

2.9 Printing a Program

2.10 Example Turing Programs

2.11 Exercises

2.12 Technical Terms

44 Introduction to Programming in Turing

2.1 Introduction
The Turing programming environment is the software that

allows you to enter and edit Turing programs on the computer.
This activity takes place in an Editor window. The programming
environment provides the means for you to run a program and
examine the results in an Execution window. The Turing
programming environment also contains the software that
translates (compiles) the program in the Turing language into a
language that the computer can interpret and then execute.

During execution, the program may prompt the user to enter
data that will be used by the program to produce its result. The
Execution window will contain the output of prompts to the user
and the final results. As information is provided by the user, what
the user types in is echoed on the screen in the Execution
window. For this reason, the Execution window could just as
easily be called the Input/Output window.

Because these different components that allow you to develop
a program are all part of the environment software, it is often
called an Integrated Development Environment (IDE). Some
IDEs, including Turing also contain a debugger, which is a tool
programmers can use to help locate and fix errors (also called
bugs) in programs.

2.2 The Editor Window
When the Turing environment is started, the Editor window is

displayed on the screen. The process for starting Turing depends
upon the type of personal computer and operating system being
used. The process is different, for example, for a PC running a
Windows operating system and a Macintosh using MacOS. The
Editor window, however, is very similar for both platforms.

Across the top of the Editor window on the PC, or across the
top of the screen on a Macintosh, is a menu bar, The menus in

Chapter 2 : The Turing Environment 45

the menu bar offer a selection of commands that can be
executed by dragging the mouse down from a menu heading and
releasing it when the desired command in the menu is reached.

On the PC, there is also a row of buttons below the menu bar.
These buttons give instant access to some of the most common
commands found in the menus. The PC also has a status bar at
the bottom of the window. This bar is used to display messages
to the user from the environment.

Figure 2.1 Editor window on the PC

46 Introduction to Programming in Turing

Figure 2.2 Editor window on the Macintosh

Programs are entered into the Editor window and edited just
as text is entered using any word processing software. It is
assumed that you have some experience:

• typing text,
• moving the cursor,
• deleting characters,
• inserting characters, and
• selecting portions of text.

2.2.1 Cut, Copy, and Paste

You will often wish to copy or move a block of text when
writing a program. This can be done easily in the Turing editor
using the Cut, Copy, and Paste commands.

To copy a block of text to a different location in the file, you
select the portion of the text you wish to copy by clicking and
dragging the mouse, or using the cursor keys with the Shift key
pressed. You then choose Copy from the Edit menu. This
command copies the selected text to the clipboard. The
clipboard is a block of memory used for temporarily storing text.
The Copy command does not change the text in the Editor
window.

Chapter 2 : The Turing Environment 47

To place a copy of the text in another location, move the
cursor to the desired place in the text and select Paste from the
Edit menu. This copies the text from the clipboard into the text at
the cursor location. The clipboard’s contents are not changed, so
you can continue to paste the same block of text multiple times.

The Cut command in the Edit menu is similar to the Copy
command except that in addition to copying the selected text to
the clipboard, it deletes the text from the Editor window. The Cut
command is used to move a block of text to a new location. The
Clear command in the Edit menu deletes the selected text
without placing it in the clipboard.

2.2.2 Undo

When editing a program, it is not uncommon to make
mistakes such as accidentally overtyping selected text or
replacing the wrong selection. The Turing environment allows you
to undo the last action performed on the text.

On the PC, you can undo the last several actions, one at a
time, using Undo several times in a row. To undo an action,
select Undo from the Edit menu. This restores the text and the
cursor position to where it was before the last change. On the
Macintosh, however, you can only undo the last action.

To restore a change that was undone by you, you choose the
Redo from the Edit menu on the PC, or Undo from the Edit
menu on the Macintosh.

2.3 Saving Programs on Disk
After entering a program in the Editor window, you must save

it to a file on disk. To save programs to the disk you must choose
the Save As command from the File menu. A Save File dialog
box appears asking you to type in a file name for the file you are
saving.

48 Introduction to Programming in Turing

Once you have entered the file name, you must click the Save
button. If another file already exists by the same name, a second
dialog box appears asking whether the contents of the old file are
to be replaced by the contents of the file you are saving. This
allows you to choose another name for the new file to be saved.

On the PC you can determine if a program has been changed
since it was last saved by looking at the window title bar. If the file
name is prefixed by a * then the file has been changed since it
was last saved.

Figure 2.3 Save File Dialog Box on the PC

Figure 2.4 Save File Dialog Box on the Macintosh

Chapter 2 : The Turing Environment 49

Commonly Turing files are saved with .t added to the end of
the file name. For example, a Turing file containing a program to
draw a happy face might be given the file name:

Happy.t

The .t helps identify files as Turing files rather than other kinds of
files. On the PC, the Turing environment automatically adds .t to
the file name if no file suffix is specified. If you do not want any
suffix added to the file, save the file with a period at the end of
the file name.

2.4 Running Programs
To execute (run) a program, you select the Run command

from the Run menu. If the Turing environment finds errors in the
program during the translation (compilation) process, the Editor
window highlights the lines on which any errors were found in
gray. It highlights the part of the line where the error actually
occurred in a different color. It also displays an error message
giving a description of the error. On the PC, the error message is
displayed in the status bar, while on the Macintosh, the error
message is displayed in a separate window.

50 Introduction to Programming in Turing

Figure 2.5 Program Error on the PC

Figure 2.6 Program Error on the Macintosh

As you correct a line containing an error, the highlighting
disappears. You can move to the next line containing an error by
selecting Find Next Error from the Search menu.

Errors that occur during compilation are called syntax errors.
These errors are the result of improperly formed programs.

Programs can be run again any time using the Run command.
Sometimes programmers find it helpful to run the program again
even though they have not corrected all of the errors because it
helps them make sure that the ones they have fixed are fixed
properly.

Chapter 2 : The Turing Environment 51

If you wish to terminate a running program, select Stop from
the Run menu.

2.4.1 Input/Output Redirection

When executing a Turing program, it is possible to specify that
input come from a file instead of from the keyboard. Likewise, it is
possible to specify that output be sent to a file instead of, or in
addition to, the output window. The process of changing where
input comes from, or output goes to, is called input/output
redirection. To redirect input or output select Run with
Arguments from the Run menu. This displays the Run with
Arguments dialog box. The dialog box allows you to select where
input is to come from and where output is to go to.

Figure 2.7 Run with Arguments Dialog Box on the PC

52 Introduction to Programming in Turing

Figure 2.8 Run with Arguments Dialog Box on the Macintosh

To make input come from a file, select either the File... or File
with Echo... radio button under Input From:. This displays a File
Open dialog box which you use to select the file from which to
read input. If File is selected, input from the file will not be
displayed in the Execution window. If File with Echo is selected,
input read from the file will be echoed to the Execution window.

To redirect output to go to a file, select either the File... or
Screen and File... radio button. This displays a File Save dialog
box which you use to select the file to which output will be sent. If
File is selected, output will be sent to the file and not to the
Execution window. If the program prompts for input, these
prompts will not be seen by the user. As well, any keyboard input
will appear in the Execution window, not in the file to which
output has been redirected.

If Screen and File is chosen, then output will be sent to both
the Execution window and to the selected file. On the PC, you
can choose to send output to the printer instead of a file. On the
Macintosh, however, you must send output to a file and then print
that file.

Note that only textual output is sent to the file. Graphical
output like rectangles and ovals are sent only to the Execution
window.

Chapter 2 : The Turing Environment 53

2.5 Indenting Programs and
Syntax Coloring

In programming, it is very important to make programs as
clear and easy to understand as possible. This makes them easy
for people other than the original programmer to understand and
for any programmer to maintain and change over time.

2.5.1 Indenting Programs

Two important ways to make programs clearer are to list each
instruction on a separate line and to indent specific groups of
instructions from the left margin. This can be done by inserting
spaces as you type the program or it can be done automatically
by the Turing environment. Selecting the Indent command from
the Edit menu automatically indents the program to its proper
structure.

Automatic indentation also helps programmers discover errors
in their programs because it provides a visual clue to missing
elements of the program. For example, if, after indenting a
program, a loop statement is aligned with an end if statement,
then there is a problem with the program and it is likely that an
end loop statement has been forgotten somewhere.

2.5.2 Syntax Coloring

On the PC, the Turing environment displays various elements
of the program in color or in boldface type. This is called syntax
coloring.

Here is how the elements in a program will appear:

keywords boldface
comments green
strings red

54 Introduction to Programming in Turing

identifiers blue

Syntax coloring can help programmers discover syntax errors
in their programs because it provides a visual clue about
misspellings or unterminated strings or comments. If a Turing
keyword is not displayed in bold face, then it has been
misspelled. If parts of a line after a string are displayed in red,
then a quotation mark has been forgotten.

2.6 Starting and Stopping the Environment
The process for starting up the Turing environment depends

upon the system on which the software is installed. Most schools
will have their own particular method of logging on to the system
and starting the software. Consult the teacher for details.

To exit the environment, Select Exit from the File menu on
the PC, or Quit from the File menu on the Macintosh. If there are
any Editor windows with unsaved programs in them, a dialog box
will appear giving you the chance to save the contents of the
window. If you select Yes, the program will be saved. If you select
Cancel, then the Turing environment will not exit. If you select
No, the contents of that Editor window will be discarded.

Figure 2.9 Save Program Changes Dialog Box on the PC

Chapter 2 : The Turing Environment 55

Figure 2.10 Save Program Changes Dialog Box on the Macintosh

On the PC, you can also exit the Turing environment by
closing the open Editor window. If you do so, a Confirmation
dialog box will appear. Clicking Cancel will stop the environment
from closing.

Figure 2.11 Confirmation Dialog Box on the PC

2.7 Opening an Existing Program
To open an existing file, you select Open from the File menu.

Turing displays the Open File dialog box with a list of existing
files. Select the file you want to open from this list of files and
click Open.

On the PC, you can also open a file that has recently been
opened by selecting Recent Files from the File menu. A
submenu then appears which contains a list of the last five files
you have opened. To open a file, just select the file name from
that list.

56 Introduction to Programming in Turing

Figure 2.12 Open File Dialog Box on the PC

Figure 2.13 Open File Dialog Box on the Macintosh

2.8 Searching for Text in a File
Like many word processing programs, the Turing environment

allows you to easily find pieces of text within a file. It also allows
you to automatically substitute one piece of text for another.
These operations are called Find and Replace.

Chapter 2 : The Turing Environment 57

2.8.1 Finding Text in a File

To find a piece of text in a file, you select Find from the
Search menu. A Find dialog box is then displayed. You enter the
text to be found in the Find What? text field. This text is called
the search text. You then click the Find Next button. The next
occurrence of the search text in the file is highlighted and
displayed in the Editor window. If the text is not found, a message
is displayed. To search for the previous occurrence of the search
text in the window, select the Up radio button on the PC, or the
Search Backwards check box on the Macintosh.

To find subsequent occurrences of the same search text
without having to reopen the Find dialog box, press F3 on the PC
or Command+G on the Macintosh.

Figure 2.14 Find Dialog Box on the PC

Figure 2.15 Find Dialog Box on the Macintosh

58 Introduction to Programming in Turing

2.8.2 Replacing Text in the File

The editor is also capable of replacing found text. This can be
useful when changing the name of a variable. To display the
Replace dialog box, select Replace from the Search menu on
the PC, or Change from the Search menu on the Macintosh.

Like the Find dialog, you enter the text to be found in the Find
What? text field. You then enter the text with which it is to be
replaced in the Replace With text field. You then click the Find
Next button to highlight the next occurrence of the search text in
the file. Unlike the Find dialog box, the Replace dialog box does
not disappear when the search text is found and highlighted.

At this point, you should click the Find Next button if you want
to skip to the next occurrence of the search text without replacing
the currently highlighted text. To replace the currently selected
text with the replacement text and search for the next occurrence
of the search text, click the Replace button on the PC, or the
Change, then Find button on the Macintosh. On the Macintosh,
you can also click the Change button to replace the highlighted
text without searching for the next occurrence of the search text.

The Replace All button causes every occurrence of the
search text in the file to be replaced with the replacement text.

Figure 2.16 Replace Dialog Box on the PC

Chapter 2 : The Turing Environment 59

Figure 2.17 Replace Dialog Box on the Macintosh

2.9 Printing a Program
To print a program, select Print from the File menu. This

displays the Print dialog box. This dialog box provides a variety
of options such as selection of pages to print and, on the PC,
whether to bold face keywords and italicize identifiers.

Figure 2.18 Print Dialog Box on the PC

60 Introduction to Programming in Turing

Figure 2.19 Print Dialog Box on the Macintosh

2.10 Example Turing Programs
Even though you have not yet studied how to create your own

Turing programs, you can learn about the Turing environment by
typing programs in and running them.

When you start the Turing environment it automatically
provides a blank Editor window in which you can begin entering
your program. If there is no blank Editor window, you simply
select the New command from the File menu.

Here is a program for you to type in and store on the disk.
When you type this program in, do not indent it. Instead, wait until
you have typed in the entire program and select the Indent
command. Notice how the automatic indenting structures the
parts of the program.

% The "TimesTable" program
% Outputs a multiplication table
var number : int
put "Choose a number between 1 and 12 " ..
get number
put "Here is the multiplication table for ", number
for i : 1 .. 12

put i : 2, " times ", number, " is ", i * number : 2

Chapter 2 : The Turing Environment 61

end for
Once you have entered and indented this program, select the

Run command from the Run menu. The screen clears when the
program begins execution. When the prompt line

Choose a number between 1 and 12

appears on the screen, type a number between 1 and 12
inclusive. When you finish typing, press Enter so the computer
knows you have finished. As soon as you press Enter, the
multiplication table appears for the number you have chosen. The
number you type is shown here in boldface.

Here is a sample Execution window:

Choose a number between 1 and 12 6
Here is the multiplication table for 6
 1 times 6 is 6
 2 times 6 is 12
 3 times 6 is 18
 4 times 6 is 24
 5 times 6 is 30
 6 times 6 is 36
 7 times 6 is 42
 8 times 6 is 48
 9 times 6 is 56
 10 times 6 is 60
 11 times 6 is 66
 12 times 6 is 72

Suppose you wanted to have a table showing your number
multiplied by the values 1 to 20 rather than 1 to 12. Can you
guess what change in the program might do this? Try changing
the program and then run it again. Store the changed program
under a new file name, say TimesTable20.t.

Try changing the program by substituting a / for the * in the
program. This produces a division table instead of a multiplication
table. Can you fix the rest of the program to suit this change?
Store this program as Divide.t on the disk.

62 Introduction to Programming in Turing

Here is a slightly longer program. When you have finished
typing it in, give the Run command and play the guessing game.
After you have played the game try reading the program to see if
you can understand some of it.

% The "GuessNumber" program
% Chooses a number at random between 1 and 99
% and allows you to guess it
var hidden, guess : int
var reply : string (1)
put "See if you can guess the hidden number"
put "It is between 1 and 99 inclusive"
loop

var count : int := 0
put "Do you want to play? Answer y or n " ..
get reply
exit when reply = "n"
% Choose a random number between 1 and 99
randint (hidden, 1, 99)
loop

put "Enter your guess (any number between 1 and 99) " ..
get guess
count := count + 1
if guess < hidden then

put "You are low"
elsif guess > hidden then

put "You are high"
else

put "You got it in ", count, " guesses"
exit

end if
end loop

end loop

Save the program on the disk as GuessNumber.t

Chapter 2 : The Turing Environment 63

2.11 Exercises
1. The program window can be used to enter any kind of data.

Clear the program window, then enter a short letter to your
teacher telling her or him how exciting it is to be using the
computer as a simple word processor. Print the letter if you
have a printer. Store the letter on the disk under the file name
Teacher. Check the directory to see that it is there.

2. Change the letter you wrote for question 1 so that an extra
paragraph is added about how simple it is to edit text on a
computer. Arrange to address this same letter to a friend as
well as to your teacher. Print both new letters if you have a
printer. Store them as files called Teacher2 and Friend. Check
the directory to see that all three files are there.

3. Here is a Turing program to type into the program window and
run.

% The "Seesaw" program
% Makes saw tooth patterns
loop

put "How many teeth do you want? (1–12) "
var count : int
get count
put repeat ("* ", count)
put repeat (" * *", count)
put repeat (" * * ", count)
put repeat (" * ", count)

end loop

Try running the program. If you get tired of making saw tooth
patterns you can stop the execution of the program by selecting
Stop from the Run menu.

64 Introduction to Programming in Turing

2.12 Technical Terms
Turing environment
Editor window
Execution window
translation
prompt
Input/Output window
Integrated Development

Environment (IDE)
menu bar
status bar
cursor
indent

syntax coloring
cut
copy
paste
clipboard
file suffix
error message
syntax error
redirecting output to disk
redirecting input from

disk

Chapter 2 : The Turing Environment 65

66

Chapter 3

Program Design
and Style

3.1 Programming and Programmers

3.2 Programming Style

3.3 The Software Development Process

3.4 Procedure-Oriented Programming

3.5 Exercises

3.6 Technical Terms

Chapter 3 : Programming Design and Style 67

3.1 Programming and Programmers
When a programmer creates a program she or he does much

more than simply sit down at a computer and begin entering
commands into the keyboard. There is a whole range of activities
that the programmer must do in order to create a well-designed
program, that is, a program that reliably solves the problem it
was created to solve.

Programming is the activity of:

• Analyzing a problem to be solved.
• Preparing a design for the steps in a set of instructions (an

algorithm) that together with the data, will solve the problem.
• Expressing the algorithm in a language that the computer can

ultimately execute.
• Ensuring that there is adequate documentation so that other

people, and not just the original programmer, can understand
the computer program.

• Testing and validating the program to ensure that it will give
correct results for the full range of data that it is to process.

• Maintaining the program over time so that any changes that
are needed are incorporated.
Many years ago very few people knew how to program and

those who did were often thought of as ÒgurusÓ. Because very
few people really understood computers a number of negative
stereotypes began to be applied to people who did. Programmers
were sometimes thought of as people, almost always males, who
spent all of their time with machines and did not relate very well to
other people. Like many negative stereotypes, however, this one
is false.

The term hacker is also used to describe people who
program computers but, over time, it has taken on even more
negative connotations. Today the term is used to describe people
who use computers to play pranks such as gaining illegal access
to other people’s or organizations’ computers and changing data,
or creating destructive computer programs called viruses.

68 Introduction to Programming in Turing

Computer viruses are actually hidden programs which, when
downloaded by the unsuspecting user, perform unauthorized
activities on any computer in which they reside. Some viruses can
cause considerable damage, so many computer users run virus
checker software to detect problems in any programs or files
they load onto their computer.

Programmers come from all walks of life and programming
itself can take many different forms. The field of information
technology, which covers a wide variety of computing activities,
offers many interesting and diverse career options. In truth, the
only things most programmers share are their abilities to:

• solve problems,
• organize information,
• design solutions,
• express instructions in a logical sequence, and
• input them into a computer.

3.2 Programming Style
Often, there are two types of computer programs: programs

that work but do not make sense to anyone except the person
who created them, and programs that any programmer can read
and understand. In the real world, no one has much use for
messy, hard to read programs. As programs become bigger and
more complex, they are almost always worked on by a number of
different people. This means that a number of people will have to
read parts of the program that they did not write. Also, over time,
programs need to be changed. Often the person who changes
the program is not the original programmer, but she or he still
must be able to read it and understand how it works.

One of the ways to make sure that programs make sense is to
follow a set of guidelines sometimes referred to as a
programming style guide. A programming style guide provides
a set of rules or expectations that every programmer must follow

Chapter 3 : Programming Design and Style 69

to ensure that all programs are clearly written and easy to fix or
change. While programming style guides may be different for
different workplaces, they all have certain things in common.
(These terms will become more familiar as you begin to develop
larger programs.)

Quick Guide to Good Programming Style:
1. Create a header at the beginning of every program. A header
is not part of the actual program, but identifies the programmer
and briefly explains what the program does. It should contain:

• programmer’s name,
• the date,
• the name of the saved program,
• project (teacher’s) name, and
• a brief description of what the program does.

2. Always include comments to explain what is happening in the
program and what various parts of it do. Variables should

include a brief description of how each variable is used.

3. Use names for variables that give a good indication of what
they do (for example, use ÒpriceÓ rather than ÒpÓ).

4. Make the structure of programs obvious by indenting the
contents of loops and if-then-else structures.

One of the most important aspects of good programming style
is to provide information about how the various parts of a
program work within the body of the program itself. This is usually
done by including comments at various places throughout the
program. These comments are written in English but are
preceded by some kind of symbol which alerts the compiler or
interpreter that they are not to be read as instructions. In Java, for

70 Introduction to Programming in Turing

example, all comments are preceded by a // of /*....*/ sign. For
example,

// This is a comment.
/* This is also a comment.
As is this line. */

 Comments are usually placed before sections of the program
to explain the purpose of the command or commands following
the comment. This is especially important for long programs. The
comments help the programmer to better understand the
structure and purpose of the program as a whole as well as its
various parts.

Efficiency is another important consideration in good
programming style. An efficient program is one which meets the
specified requirements, executes in the least possible amount of
time, and is logically organized with clearly documented code so
that it can be easily maintained.

3.3 The Software Development Process
Large software development projects can go through a

sequence of these steps one after the other in a software life
cycle as shown in Figure 3.1. This series of steps is sometimes
called a waterfall model because it looks like water cascading
down from one level to the next.

Chapter 3 : Programming Design and Style 71

Figure 3.1 Waterfall Model of Software Development

In the early days of computing the first three parts of the
programming activity were sometimes called analyzing,
programming, and coding. Each of these activities might have
been done by a separate person with special qualifications. Over
time, however, the increasing complexity of the software being
developed has required that greater emphasis be placed on the
analysis of problems to be solved and the resulting design of
programs and applications.

The implementation stage (once called coding because most
early programs were written in machine code) has also evolved to
meet the need for programs which can be understood by anyone
with some knowledge of the nature of programming languages.
Programmers today are much more likely to use a high-level
programming language. The advantage of a high-level language
is that it is easier to understand.

The waterfall model is an idealization of the programming
process. In reality the process is closer to that shown in Figure
3.2.

72 Introduction to Programming in Turing

 Figure 3.2 Iterative Model of Software Evolution

There is a certain amount of backtracking in the actual
evolution of a piece of software of any complexity, particularly if
the software is constantly being updated.

In many ways we try to prepare programs that are self-
documenting by using variable names such as netPay to indicate
that the variable contains information concerning the net pay of
an employee.

The programming language Turing has a number of words
called keywords that are used for various operations, such as if
for selection or while for repetition. These have been chosen to
be brief but expressive. When a programmer invents names to
identify entities (identifiers) it is best if they are as brief as
possible without sacrificing understandability. Abbreviations
should be used only when they are well-understood, such as GST
for Goods and Services Tax and FBI for Federal Bureau of
Investigation.

Since the purpose of creating computer programs is to solve
problems, before anything else, a programmer must be a problem
solver. Problem solving is the process of breaking problems
down into smaller more manageable parts. As the large problem
is broken down into smaller parts, each part becomes more
specific. These individual solutions to smaller problems are then
combined to solve the larger problem. Problem solving is also
referred to as analyzing the problem to be solved.

Chapter 3 : Programming Design and Style 73

Once the programmer has analyzed the problem, he or she is
ready to begin designing a solution. In programming, the design
stage involves defining a set of instructions (called an algorithm)
that, together with the data, will solve the problem. The next step
is to express this algorithm in a programming language so that
the computer can execute it (carry out the instructions). This
stage is sometimes referred to as coding although this term is
not as popular as it once was.

Because people other than the programmer must be able to
understand, use, and often modify a program, the program must
be understandable. This means ensuring that there is good
documentation. There are commonly two kinds of documentation.
The term internal documentation refers to the comments within
a program that explain what the various parts do. The
supplementary resources such as Reference Manuals and User’s
Manuals are external documentation. Often, an application will
also provide internal help files that the user can access.

Once the program has been written it must be extensively
tested to ensure that it performs the way it should. Testing often
involves running the program with a full range of data. The
programmer must also be sure to run it with both valid data, that
is, the data the user should be inputting, and invalid data, that is,
incorrect or unexpected data, to determine how the program will
behave in as many situations as possible.

When computer programs control such profound aspects of
our lives as the airplanes we fly in and the machines that provide
radiation to cancer patients, the results of improper or insufficient
testing can be wide-ranging and catastrophic.

The programming process also involves the job of
maintaining a program over time so that any changes that are
needed are incorporated. Many businesses, for example, must
frequently change or enhance their programs to make them
perform new tasks or perform old tasks more efficiently.

74 Introduction to Programming in Turing

3.4 Procedure-Oriented Programming
In procedure-oriented programming, programs are designing

in a top-down manner. The programmer starts by writing the
specification of the problem to be solved and gradually refines the
solution by breaking it into parts, each of which can in turn be
broken into parts. These parts are often solved (implemented) as
procedures.

Figure 3.3 is called a structure chart. It illustrates how the
each task is broken down into subtasks. In a program, each
subtask might consist of a procedure which would be called by
the procedure above it in the structure chart.

This structure chart shows how a program is refined step by
step starting at the top (1), with a statement of what is required,
here sorting a list of names alphabetically. This top node in the
diagram is expanded or refined into three nodes 2, 3, and 4. The
computations represented by these three nodes, carried out
sequentially, satisfy the top node’s specification. The nodes 5, 6,
and 7 are further refinements in the procedure-oriented
programming language.

Chapter 3 : Programming Design and Style 75

Figure 3.3 Top-Down Programming

3.5 Exercises
1. Define the following:

(a) algorithm

(b) hacker

(c) virus

2. Explain the purpose of a programming style guide?

3. Explain the main differences between the waterfall model of
software development and the iterative model of software
development.

4. Describe the process by which a programmer designs a
program.

5. What does a structure chart show?

76 Introduction to Programming in Turing

3.6 Technical Terms
algorithm
called
coding
comments
documentation
execute
help files
keyword
identifier
information technology
invalid data
maintaining
problem solving

procedure
procedure-oriented

programming
programming style guide
software lifecycle
step-by-step refinement
structure chart
top-down
valid data
virus
virus checker software
waterfall model
well-designed program

77

Chapter 4

Simple Programs

4.1 A One-Line Program

4.2 Changing the Program

4.3 Substituting One String of Characters for Another

4.4 A Program that Computes

4.5 Integers and Real Numbers

4.6 Arithmetic Expressions

4.7 Combining Calculations and Messages

4.8 Output of a Series of Items

4.9 A Series of Output Statements

4.10 Exercises

4.11 Technical Terms

78 Introduction to Programming in Turing

4.1 A One-Line Program
By following the examples in this chapter you can learn how to

write programs in the Turing programming language and have
them execute (run) on your computer. Here is a program for you
to try. (Make sure that you have a clear window. If not, use the
new command.)

put "Have a good day"

This is a one-line program. Type it into the window just as you
did other text. When you finish typing the program, you can run it.
The result of the execution will appear in the Execution window.
The output will be

Have a good day

Concentrate on the output from your program. Notice that the
put caused output. What is output is the string of characters that
is enclosed in the double quotes following put. The quotes
themselves are not output. The put is a keyword in the Turing
language and is used whenever you want output. Keywords in
this book are shown in boldface type. In the window they will not
be boldface. Whenever a new technical word appears in the text
it is also shown in boldface type so you will notice it. Usually the
meaning of the new term is clear from the context. The next time
it appears it will just be in ordinary type. Keywords from Turing will
always be boldface.

4.2 Changing the Program
The execution of the first program resulted in the output of

Have a good day

Chapter 4 : Simple Programs 79

We are going to change the program so that it will type a
person’s name. If the name is Pat, it will say

Have a great day, Pat

Go back to the Editor window if the Execution window is still
showing. Now use the editing methods we already discussed to
make the changes. We want to change the word good into the
word great and add Pat at the end of the line. We cannot simply
exchange letters by typing great over top of good because great
has one more letter. See if you can do this. When you are done,
run the program again to see that you get the expected result.

4.3 Substituting One String of Characters
for Another

In our editing we changed the word good to the word great.
This can also be done by using the Replace command (Change
on the Macintosh) from the Search menu. This allows you to
change a string, called the source string, to another string,
called the target string. In the example above, use the Replace
command to change Pat to Chris. Now run the program again.

4.4 A Program that Computes
The program that outputs "Have a good day" shows you how

the computer can be programmed to display a message to the
user. This is very important when you want other people to use
your programs. You can tell them what you want them to do.

But computers got their name from the fact that their original
purpose was to calculate, using numbers. They can, for instance,
add 2 and 2. Here is a program to do this.

put 2 + 2

80 Introduction to Programming in Turing

Try running this one-line program. It will output the number 4.
Now change the program to this.

put 2 * 2

You will get 4 when you run it. The * means multiply 2 by 2. If you
don’t believe it multiplies, change it to

put 2 * 3

You get 6. When you try

put 2 + 3

you get 5. Try subtraction

put 6 2

If you want to divide, you use the slash / symbol. The program

put 9 / 3

will produce 3 which is 9 divided by 3.

4.5 Integers and Real Numbers
So far all the calculations we have shown involve integers,

which are numbers without fractions. If you write this program

put 4 / 3

the result is 1.333333. The answer has a decimal point in it. We
say it is a real number rather than an integer which has no
decimal point. Try this one

put 2 / 3

The result is 0.666667. There are 7 digits in the answer. The true
answer would have an infinite number of digits; the 6 would just
keep repeating. When this real number is represented by a

Chapter 4 : Simple Programs 81

limited number of digits, the number is rounded off. The rule for
rounding is that the computer attempts to produce the closest
answer to the exact result. That is why the last 6 is rounded up to
a 7.

You can do calculations with real numbers as well as with
integers. For example,

put 7.2 + 9.35

will give the output 16.55.

4.6 Arithmetic Expressions
We have been asking the computer to do arithmetic for us

and have given it arithmetic expressions to be evaluated.
These expressions involved two numbers, either real or integer
combined in some operation such as addition, subtraction,
multiplication, and division. We can also write more complicated
arithmetic expressions and the computer can deal with these just
as you would. For example,

put 5 + 6 * 3

will produce the output 23. You would perform the multiplication
first because the multiplication operator * has precedence over
the addition operator +. The normal rules of precedence apply
also to the computer: multiplication and division before addition
and subtraction, and left to right for equal precedence operators.
You can change the precedence by using parentheses in the
arithmetic expression. For example,

put (5 + 6) * 3

gives the output 33. The operations inside parentheses have
precedence over those outside.

82 Introduction to Programming in Turing

4.7 Combining Calculations and Messages
We can write output statements which have more than one

output item, for example, a message in quotes followed by an
arithmetic expression. Here is such a program.

put "2 + 2=", 2 + 2

It produces this output

2 + 2=4

The message in quotes is output exactly as typed, with the
quotes removed, then the value of the arithmetic expression
follows, namely 4. This kind of statement is used when we want
to say what a calculated number represents. We label the
results.

4.8 Output of a Series of Items
You can output a list of items provided they are separated

from each other by commas. For example,

put 2 + 5, 3 * 7, 5 –2

produces the output 7213. The output values are all run together
so that it looks like one value. You can space items apart by
including spaces (blanks in quotation marks) between them, like
this

put 2 + 5, " ", 3 * 7, " ", 5 –2

The output is now

7 21 3

Another way to separate output is to give a field size in which
the item is to be output. This field size is placed after the output
item referred to and preceded by a colon. For example,

Chapter 4 : Simple Programs 83

put 2 + 5 : 5, 3 * 7 : 5, 5 –2 : 5

Here each output item is assigned a field of size 5 spaces. It will
be output right-justified in the size of field so that the output will
look like this

°°°°7°°°21°°°°3

There is no output where the °s are. They are there just to show
you how many spaces are left. The actual output is

7 21 3

Using field sizes or blanks in quotation marks allows us to
space the output items along a line any way we want. We format
the output.

When we format a message in quotes by specifying a field
size it is left-justified (placed on the left end) in its field. Numbers
are right justified. To get multiple blanks in the format we can use
a single blank in quotes followed by a field size. For example,
there will be 10 blanks between the 5 and 6 in the output from
this program

put 5, " ": 10, 6

4.9 A Series of Output Statements
Each put statement starts a new line of output. For example,

here is a program to output two lines.

put "To be or not to be"
put "That is the question"

You do not have to start a new line with every new put statement.
If you want the following put statement to continue on the same
line then just follow the output items of the first put by two dots.
For example,

put "Albert" ..
put "Einstein"

84 Introduction to Programming in Turing

produces output on a single line

AlbertEinstein

If you want a space between these you must include a
separate blank output item or have a blank inside the quotes
following Albert or preceding Einstein. To output a blank line we
use

put " "

where what is output on the line is a string with no characters in it.

4.10 Exercises
1. Erase the window (or create a new one) using the New

command in the File menu and enter a program that wishes
you a happy birthday. Run it, then change it to a greeting that
includes a friend’s name. Try using the replace command and
give birthday greetings to another friend.

2. Enter a program to output a number of lines of a song. Pick a
repetitious song like "Old MacDonald Had a Farm" and enter
the first verse and chorus. Run it. Now use the editing facilities
of the Turing environment to add a second verse and chorus
without entering the entire words; copy the program that
produces the first verse and chorus and make the necessary
changes. Store your program on the disk.

3. Write a program to output an address label, with name, street,
city, province, and postal code. Copy the program several
times using Copy and Paste. Run the program to produce a
series of identical address labels. Add put statements
between the ones producing the labels so that there are two
blank lines between each label.

4. Write programs to calculate:
a. the area of a circle of radius 10 m,

Chapter 4 : Simple Programs 85

b. the annual interest payable on a loan of $5365.25 at
12.5%, and
c. the sales tax payable at 7% on a purchase of $12.50.
In the last two examples the answers are not rounded off to
the nearest cent. You can force this by indicating not only the
field size but the numbers of decimal places to be output. For
example,

put 1.66666 : 5 : 2

will produce °1.67. The 2 indicates that you want 2 decimal
places. The last decimal digit is rounded off. Change the
programs for parts b and c to output values to the nearest
cent.

5. Experiment to see what happens when you specify a field size
which is too small to hold a number. For example, try this
program.

put "How many digits ", 1 / 3 : 5
put "What about this?": 8

6. What happens when you work with very big numbers? Try this
example

put 32516 * 578632.0

Try others. When the result is output, it is in the exponent
form, often used in science. Try leaving the decimal point off
the second number.

7. What happens when you work with very small numbers. Try
this example

put 0.0000003 * 0.000006

Try others. The exponents or powers of 10 are negative.
8. Try a program with the ** arithmetic operator

put 7 ** 2, " is the same as ", 7 * 7

The ** is the operator for exponentiation. Try other
examples.

86 Introduction to Programming in Turing

9. Use the exponent form of real numbers in an arithmetic
expression. For example,

put 6e5 + 2e2, " is the same as ", 600000 + 200

When is the answer output in exponent form? Experiment
using other examples.

10. In Turing there are a number of mathematical functions
predefined in the language. Try this

put "The square root of 49 is ", sqrt (49)

The sqrt function produces the square root of what follows in
parentheses. Try this

put sqrt (371 ** 2)

Experiment with the square root function.

4.11 Technical Terms
programming language
put instruction
string
line editor
appending lines
substitute command
execute
arithmetic expression
arithmetic operator
precedence of operators
parentheses
real number

integer
field size
right justified
left justified
format
round off of number
exponent form
exponentiation operator
square root function
blank line
new page

87

Chapter 5

Variables and Constants

5.1 Storing Information in the Computer

5.2 Declaring Variables

5.3 Inputting Character Strings

5.4 Mistakes in Programs

5.5 Inputting Numbers

5.6 Inputting Real Numbers

5.7 Constants

5.8 Assignment of Values to Variables

5.9 Understandable Programs

5.10 Comments in Programs

5.11 Exercises

5.12 Technical Terms

88 Introduction to Programming in Turing

5.1 Storing Information in the Computer
So far the Turing programs you have seen just output

messages or the results of a calculation. You can output a series
of such items and format them so the output is easily understood.
Nothing very exciting happens in programs until you learn how to
input information and store it in the computer’s memory.

The kind of information or data we store is mostly either
numbers (real or integer) or strings of characters. When you store
information in the computer’s memory you must remember where
you stored it. To do this you give each location where you will
store data a name or identifier. What you store in a named
memory location can change; it can vary. You call the locations
that hold the data variables. In writing a program that uses
variables you must declare the names you intend to give to your
variables. You make up the names yourself. After you have
established what the names will be, you can input information into
the variables from the keyboard, change the values of the
variables, and output their values into the window.

5.2 Declaring Variables
In naming variables you must declare what type of information

they are to hold, that is, the data type of the variable. A variable
to hold numbers can be either a real or int (for integer) data type.
Strings of characters can be stored in variables of type string.
Variables that you want to use in a program must be declared
before you use them.

To declare a variable you write a line in your program which
has the form

var name-of-variable : type-of-variable

Chapter 5 : Variables and Constants 89

A declaration begins with the keyword var (for variable). Here is a
declaration which declares a variable called age which is to hold
an integer.

var age: int

The name of the variable age is followed by a colon (:) then its
data type which is int. The types are also keywords in the Turing
language but the name is something you make up yourself.

5.2.1 Names of Variables

Names or identifiers of variables contain letters of the
alphabet. After the first letter, you can use digits (0 to 9) and
underscores (_), but no special characters such as spaces,
hyphens, or periods. For example, page3 is valid name but 3rd is
not because it does not have a letter as its first character. If you
want to have a name which is really two or more words such as
this year, you could write it as this_year but we will write it as one
word thisYear using a capital letter to show where the second
word begins. Here is a declaration for a variable to store a
person’s first name.

var firstName: string

There is a list of words in Turing that are reserved and may
not be used as names of variables. These words are listed in the
appendix.

5.3 Inputting Character Strings
Here is a program that reads a string and outputs a message

with the string in it.

put "Enter your first name"
var firstName: string
get firstName
put "Hello ", firstName

90 Introduction to Programming in Turing

The first line of the program outputs a message which prompts
you to enter your first name. The next line is the declaration of the
variable firstName. After that is the input instruction. It starts with
the keyword get and then follows the name of the location where
what you input is to be stored. The last statement outputs two
items: the string in quotes, then the value of the variable
firstName. Type the program into your computer and try it. After
the prompt

Enter your first name

appears in the window the cursor will be at the beginning of the
line following the prompt. Nothing will happen until you type a
name followed by Return. If you do not press Return after typing
your name the computer will not know that you have finished. For
example, if your name were Diana you might type a nickname
such as Di and expect the computer to go on and say Hello Di .
But it will do nothing until you press Return. Run it again, this time
giving your second name instead of your first name. The
computer does not tell you that you are mistaken. It cannot tell
the difference between a first name and a second name or even
a last name. Here is how the Execution window might look after
the program has run

Enter your first name
Albert
Hello Albert

The computer produces the first and third lines with the two
put instructions; you type in the second. Both what you type and
what the computer outputs are displayed in the Execution window
in the same way so that when you are finished you cannot tell the
input from the output.

5.3.1 Strings Containing Blanks

When you input a string in the normal way it is assumed that
there are no blanks in it. For example, if you enter your first and
last names in the previous program your Execution window will
look like this

Chapter 5 : Variables and Constants 91

Enter your first name
Albert Einstein
Hello Albert

The last name is ignored. This is because the get operator for a
string variable reads characters until it hits "white space" such as
a blank or a Return. Whatever comes after that is not read. You
could get it to read the whole name if you put it in quotation
marks as here

Enter your first name
"Albert Einstein"
Hello Albert Einstein

We call a quoted string or a string surrounded by white space a
token and say we are using token-oriented input. Turing includes
a version of the get command that allows an entire line including
spaces to be input. (See Chapter 10 for information on Òline-
oriented inputÓ.)

5.4 Mistakes in Programs
All variables used in programs must be declared before you

use them. If, by mistake, you omit a declaration the computer will
give you an error message indicating that in a certain statement
you are attempting to use an undeclared variable. This kind of
error is called a syntax error. Turing, like the English language,
has rules of grammar or syntax that must be obeyed. One of
these syntax rules is that variables used in programs must be
declared before use.

If, by mistake, you spell a variable’s name differently in the
declaration and the statement where it is used you get the same
syntax error. You are using a variable that has not been declared.
For example, if you forgot to capitalize the N in firstName in the
get statement you would get a syntax error message. When you
get such a message, change the program to correct the error and
run it again.

92 Introduction to Programming in Turing

5.5 Inputting Numbers
When you are inputting numbers you must remember that

there are two kinds of numbers: real numbers and integers. A
variable declared as int can hold an integer such as 23 but not a
real number such as 8.47. A variable declared as real can hold a
real number such as 8.47. It can also hold 23.0, which is a real
number that we can consider to be the same as the integer 23. A
string variable can hold a string of characters, such as Albert, but
not a number as such.

Here is a program that reads an integer and outputs its
square.

var number: int
put "Enter an integer"
get number
put "The square of ", number, " is ", number * number

Here the declaration of the variable number precedes the prompt.
It does not matter in what order these are given since the prompt
does not use the variable. Here is a sample execution

Enter an integer
12
The square of 12 is 144

Try running the program yourself.

5.5.1 Mistakes in Data

If in the previous program you enter a real number the
computer will report an error. This is called an execution or run
time error since the error is not in the program itself but occurs
during the running of the program. Here is an example where a
data error occurs.

Enter an integer
8.47
Line 3: Illegal integer input

Chapter 5 : Variables and Constants 93

You should not enter a real number or a character string when
the computer expects an integer.

5.6 Inputting Real Numbers
Here is an example using real numbers.

put "Enter the radius of a circle"
var radius: real
get radius
put "Area is ", 3.14159 * radius ** 2

Here is a sample Execution window.

Enter the radius of a circle
35
Area is 3848.44775

Notice that the input of an integer is legal for a real variable.
At most 6 digits appear to the right of the decimal point in the
area. If fewer appear it is because they are zero. Since
exponentiation (**) has higher precedence than multiplication, the
radius is squared before multiplying by 3.14159.

If the radius is large the area is output in the exponent form.
Here is such an example Execution window.

Enter the radius of a circle
6754
Area is 1.433084e8

The digit 8 following the e is the power of 10 that is to multiply
the significant digits part. For small values the exponent form is
also used. For example,

Enter the radius of a circle
.0000897
Area is 2.527752e–8

The exponent form is used automatically by the computer
when the number it has to output is too large or too small for its

94 Introduction to Programming in Turing

normal form of real numbers. You can use real numbers in the
exponent form in your program or input if you want to.

5.7 Constants
Sometimes we use memory locations to hold information that

remains constant. Such constants can be declared just as
variables are declared but in this case a value must be assigned
to the constant at the time of declaration. For example, we could
declare a constant pi by this declaration

const pi : real := 3.14159

Constants can also be strings. For example we could declare
a constant prompt using this declaration

const prompt : string := "Enter your name "

Notice that the name of the constant is followed by the type
then := and then the value. As with variable declarations,
constant declarations can appear anywhere in the program as
long as the declaration precedes the use of the constant. We
could use such a constant in our area program in this way

const pi : real := 3.14159
var radius: real
put "Enter radius " ..
get radius
put "Area is ", pi * radius ** 2

Here is a sample Execution window.

Enter radius 5
Area is 78.53975

The result is basically the same as before. We give names to
constants, such as 3.14159, to help make our programs more
understandable. Notice that the prompt here has two dots after it
so that the cursor remains on the same line for you to enter the

Chapter 5 : Variables and Constants 95

radius. The prompt has a blank at the end of it so that there will
be a space before the radius (before 5).

Here is example of a program that uses a string constant.

const prompt : string := "Enter your first name"
var firstName : string
put prompt ..
get firstName
put "Hello ", firstName

Placing the text of the prompt in a constant declared at the top
of the program allows you to change the text without having to
search through the program. This becomes more important when
you have large programs and want to use the same prompt
several times.

5.8 Assignment of Values to Variables
So far we have just input values into the location of variables.

We can also assign a value to a variable in an assignment
statement. Here is an example program using an assignment
statement.

const pi : real := 3.14159
var radius: real
var area: real
put "Enter radius " ..
get radius
area := pi * radius ** 2
put "Area is ", area

Because radius and area are both real variables they can, if you
want, be declared in the same declaration. For example

var radius, area: real

instead of

var radius : real
var area : real

96 Introduction to Programming in Turing

The second last statement assigns the value of the arithmetic
expression

pi * radius ** 2

to the variable area . Then, in the following put statement, the
value of area is output. This program does exactly the same thing
as before except that now it is clear that you are computing the
area of the circle.

Assignment statements are used when an intermediate value
in a calculation has to be stored in memory, as well as to make
the program easier to understand.

We can think of := as a left pointing arrow that moves the
value into the variable. This is the same pair of symbols (:=) used
when the value is assigned to a constant in a declaration.

Assignment statements can also be used with strings. Here is
a program that reverses the order of two entered items.

var firstItem, secondItem : string
put "Enter the first item " ..
get firstItem
put "Enter the second item " ..
get secondItem
put "Here are the items reversed: " ..
put secondItem, " ", firstItem

5.9 Understandable Programs
Several times we have mentioned that we want our programs

to be understandable. This is so you yourself can understand
what is happening in the program even as you create it. You are
less likely to make mistakes this way. If you have a written record
of a program and come back to it after a day or so it is much
easier to see what it does. Also another person, such as a
teacher, can quickly read the program and perhaps see what is
wrong with it if it is not doing what you expect it to do.
Understandability is so important that computer scientists believe

Chapter 5 : Variables and Constants 97

that a program which is not easily understood is virtually
worthless even though it may give a correct answer.

One way we have of trying to make programs easy to read is
to put each statement on a separate line. This does not matter to
the computer. We could, if we liked, run the program all together
like this

const pi := 3.14159 var radius, area: real put "Enter radius" ..
get radius area := pi * radius ** 2 put "Area is ", area

But this is much harder to read. Sometimes a program will have a
rather long line and we must start a new line. This is fine provided
we do not break the line in the middle of a keyword, or variable
name, or a number, or a quoted string. If you must break a
quoted string in a put statement insert a quote and a comma
before the break and quotes to begin the continuation. For
example

put "Here is a very long line that had to ",
 "be broken"

5.10 Comments in Programs
There are a number of ways to make a program more easily

understood. We try to choose names for variables which tell the
reader precisely what the values to be stored in a variable
location are to represent. We choose good variable names.

Another way to make a program understandable is to add
comments to it to explain what it does or how it does it if it is at all
obscure. Most good programs require only a few comments but
they can be helpful.

A comment in the program begins with a % sign and ends with
a Return. We could add this comment to our circle program

% Computes the area of a circle given its radius

A comment can be placed anywhere you like in a program. It is
ignored by the computer; it is just for the reader’s benefit.

98 Introduction to Programming in Turing

Sometimes we want to give a program a name so you can
refer to it by name. We will be storing programs as files on the
disk memory and files must have a name. A comment placed as
the first line of a program can give its file name. We use a
standard form which you may use. For example, as a first line in
the CircleArea program we would have a comment

% The "CircleArea" program

Here is the CircleArea program with comments.

% The "CircleArea" program
% Computes the area of a circle given its radius
const pi : real := 3.14159
var radius: real
var area: real
% Ask the user for the radius
put "Enter radius " ..
get radius
% Calculate the circle's area
area := pi * radius ** 2
% Output the result
put "Area is ", area

Turing programs stored on disk should have .t added to their
names to identify that they are Turing programs. This program
would be stored as CircleArea.t.

5.11 Exercises
1. There are 2.54 cm in one inch. Write a program to input the

length of a desk in inches and output its length in centimeters.
Use a constant for the conversion factor. Be sure to prompt
for the input and to label the output.

2. Write a program that asks for a person’s year of birth and
outputs their age in the current year. Write the program to
work for whatever the current year happens to be.

Chapter 5 : Variables and Constants 99

3. Write a program that inputs the starting time and finishing time
of an automobile trip as well as the distance in kilometers
traveled and outputs the average speed in km/hr. The times
are to be given in two parts: the hours, then the minutes.

4. Write a program that reads in four numbers and then outputs
the four numbers all on one line with commas between the
numbers.

5. Write a program to input a name and output a message that
greets a name. For example, if the name is ÒSueÓ, then the
message might be ÒHello Sue!Ó. Use constants for the
greeting.

6. Write a program to calculate and output the product of three
numbers entered via the keyboard. Also output the square of
the product.

7. Write a program that inputs five full names and outputs the
names in reverse order.

8. Write a program that inputs a first name and a last name then
outputs this in the form

last name, first name

Try to write a version which inputs the two names from a
single input line.

9. Experiment with programs where you purposely make syntax
errors to see what the error messages are like.

10.Experiment with programs where you purposely input the
wrong type of data to see what happens. For example, enter
an integer when a string is expected.

11.See what happens when you run this program

var age: int
put "Enter age"
get age
age := age + 1
put "age is ", age

How do you interpret the assignment statement

age := age + 1

100 Introduction to Programming in Turing

Would another variable called ageNextYear make the
program more understandable?

12.Experiment with adding comments to a program. See if you
can add a comment to the end of a line. Can a comment be in
the middle of a line?

13. The Prom Committee at your school will sell tickets at $65 per
person. Expenses include the cost of the food, the DJ, the
hall, the decorations, and the waiting staff. To these
expenses, add $100 for miscellaneous expenditures. Write a
program to ask for each of the expense totals incurred and
then calculate and output to the committee how many tickets
they must sell to break even.

14. A student wrote 5 tests. Ask the student for their name and
then what each test is marked out of and what mark they
received on each test. At the end of the run calculate and
output the percentage for each test as well as the average on
all five tests also as a percent. When querying the student,
address each request with their name. Make sure that output
statements include the name of the student.

15. Ask the user for a real number which expresses the area of a
figure. Assume that the figure was a circle. Output the radius
and then the circumference of the circle. Now assume that the
figure was a square. Output the length and width and then the
perimeter of the square. Use complete statements in each
case.

5.12 Technical Terms
data
memory of computer
variable
declaration of variable
data type
name of variable

reserved word
type of variable
real
int
string
var

Chapter 5 : Variables and Constants 101

get statement prompt
token
token-oriented input
quoted string
syntax error
execution error
run time error
constant
declaration of constant
assignment statement
comment
program name

103

Chapter 6

Repetition

6.1 Loops

6..2 Conditional Loops

6.3 Counted Loops

6.4 Random Exit from Loop

6.5 Compound Conditions

6.6 Exercises

6.7 Technical Terms

104 Introduction to Programming in Turing

6.1 Loops
One of the labor saving features of computers is that the

same set of instructions can be used over and over with different
input data. So far to get repetitious results we had to run our
programs over and over. For example, we could run the
CircleArea program and each time compute the area of a new
circle. In Turing there is a way of having repetitions built into the
program itself.

Here is the ManyCircleAreas program all set to work
repetitiously.

% The "ManyCircleAreas" program
% Computes the areas of circles
var radius, area : real
const pi := 3.14159
loop

put "Enter radius " ..
get radius
area := pi * radius ** 2
put "Area is ", area

end loop

In this program there is a loop statement which starts with the
keyword loop and ends with end loop. The body of the loop,
which is the part we have indented, will be executed over and
over. This means that we can calculate the areas of as many
circles as we want. As soon as we enter the radius of a circle in
response to the prompt, its area is calculated and output; then
the execution of the body of the loop begins again with the output
of the prompt. This is an infinite loop in that it will go on forever.

To stop the execution of a program that contains an infinite
loop requires intervention on your part. Click the Stop button in
the Execution window. On the Macintosh, select Stop from the
Run menu. This will stop execution and return you to the Editor

Chapter 6 : Repetition 105

window with the line that was being executed highlighted.
Entering illegal input (for example a word when the computer
expects a number) will also stop the program.

Notice that we have put comments in this program to give it a
title and explain what it does.

6.2 Conditional Loops
The first loop we have shown is an infinite loop and requires

your intervention to stop its execution. We will now see a different
loop that will stop itself once a particular condition holds. This
program stops when you enter a value for the radius which is an
acceptable value to input but is an impossible value for a radius.
A negative radius is not meaningful so we will use that as a signal
to stop.

This signal is called a sentinel. Always indicate what the
sentinel is so the user knows how to gracefully exit the loop.
Immediately after inputting the variable, test to make sure it is not
the sentinel. Your exit when statement should follow your get
statement. If you do not test the variable you may be including
your sentinel in calculations that it was not meant to affect.

 Here is the program.

% The "ManyCircleAreas2" program
% Compute circle areas until you enter a negative radius
var radius, area : real
const pi := 3.14159
put "Enter a negative radius to stop execution"
loop

put "Enter radius " ..
get radius
exit when radius < 0
area := pi * radius ** 2
put "Area is ", area

end loop
put "That's all folks"

106 Introduction to Programming in Turing

This program is like the one containing the infinite loop except
for different comments, and the addition of a new prompt and an
exit when statement in the body of the loop. In the exit when
statement, there is the condition radius < 0 which tests to see if
the radius is less than zero (that is, negative). When this
condition is true the computer leaves the loop and goes to the
statement following the end loop. It will then output the sign off
message.

Here is a sample Execution window.

Enter a negative radius to stop execution
Enter radius 5
Area is 78.53975
Enter radius .75
Area is 1.767144
Enter radius –1
That's all folks

The signal to stop is given after two actual calculations. If we
wanted the signal for ending the loop to be –1 and not just any
negative number, we would use this statement

exit when radius = –1

6.2.1 Comparisons

Simple conditions (also called logical, Boolean or true/false
conditions) used in exit when statements involve comparing two
things where the comparison operator can be < or =, as we
have already seen. The complete set of these operators is

= equal to
< less than
> greater than
not= not equal to
<= less than or equal
>= greater than or equal

Chapter 6 : Repetition 107

The form of a condition is

expression comparison-operator expression

Comparisons of numerical values have the usual
mathematical meaning. For example, 6 < 7 is true, 2 + 2 = 4 is
true, and 11 <= 16 – 8 is false. In all cases, the comparison (and
thus the value of the simple condition) is either true or false. A
Boolean value is one that can have only the values true or false.

A problem may arise when comparing real values Avoid using
the Ò=Óor equals condition when comparing real numbers.
When stored in a computer, real numbers may not be completely
accurate. For example a computer cannot store the value one-
third exactly. For this reason, it is better to use Ò>=Ó or Ò<=Ó
instead of Ò=Ó when doing a comparison.

For example, instead of :

exit when amount = 0.1

use

exit when amount <= 0.1

or use

exit when amount >= 0.1

whichever fits the logic of the program.

6.2.2 Comparing Strings

With strings, the comparison operators take on a slightly
different meaning. The meaning of < is that one string comes
before the other string alphabetically, provided the strings are all
letters of the same case: upper or lower. When digits or special
characters are included in the strings the sequence followed
cannot be alphabetic since they are not part of the alphabet. The
actual sequence is called the collating sequence of the code for
the characters. Microcomputers use the set of ASCII characters
which is given in the appendix. Each character has a numerical

108 Introduction to Programming in Turing

value, for example the character "A" is 65, "B" is 66, "C" is 67,
and so on. Lower case letters have different values: "a" is 97, "b"
is 98, etc. This means that the condition

"A" < "B"

is true and also that

"a" < "B"

is false.
If the first characters of two strings are the same then the

comparison of the next two tells the relation between them. For
example,

"Bob" > "Bill"

is considered to be true. In other words, "Bob" comes after "Bill".
Two strings are not equal to each other unless they are the same
length. For example,

"Stop" = "Stop "

is not true because there is a blank at the end of the second
string and it is thus five characters long. However,

"Stop" not = "Stop "

is true.

6.2.3 An Example Conditional Loop

Here is a program that reads in the marks of a student and
then outputs the student’s average mark to the nearest integer.

% The "ComputeAverage" program
% Compute the average of a series of marks
% Give average to the nearest integer
put "Enter a series of marks"
const sentinel := – 1
put "End with ", sentinel
var mark : int
var count, sum : int := 0

Chapter 6 : Repetition 109

loop
get mark
exit when mark = sentinel
count := count + 1
sum := sum + mark

end loop
put "Average mark is ", round (sum / count)

Here is an example execution.

Enter a series of marks
End with –1
68
74
83
90
–1
Average mark is 79

The signal that the series of marks is finished is set to –1 by a
constant declaration. This means if you want to change the
signal, all you have to do is change that one statement. The two
variables count and sum are declared as int and initialized to be
zero by the := 0 at the end of the declaration. These variables
have been initialized to a value in their declarations. The
declaration with initialization is equivalent to this.

var count, sum: int
count := 0
sum := 0

As each mark is read in, count is increased by 1 and the mark
is added to sum. The final average, after the last mark is read in,
is computed by dividing the sum by the count. The value of
sum/count is a real value which may, by chance, be an integer
but, in general, has a fractional part which must be rounded off.
To do this we use the predefined Turing function round. If we had
wanted just to discard the fractional part, that is truncate it, we
could use the integer division

sum div count

110 Introduction to Programming in Turing

The div operator is similar to / but it discards any fraction and
produces an integer. The value of round (5/3) is 2 whereas 5 div
3 is 1.

6.2.4 Another Conditional Loop

This program reads words until the word "stop" is read, then it
stops.

% The "Obey" program
% Read in a series of words
% until the word "stop" is read
var word : string
put "Enter a series of words, one to a line"
put "If you want to stop say so"
loop

get word
exit when word = "stop"

end loop
put "This is the end"

Here is a sample Execution window.

Enter a series of words, one to a line
If you want to stop say so
dog
bites
man
bites
dog
stop
This is the end

Although these examples do not show it, a loop can contain
several exit statements.

Chapter 6 : Repetition 111

6.3 Counted Loops
So far we have had two kinds of loops: the infinite loop and

the conditional loop. There is another kind of loop that you can
use, that is, the counted loop. These are loops that you want
repeated a fixed number of times.

Here is a program that reads 5 student marks and computes
the average mark.

% The "ComputeAverages" program
% Reads marks and computes average
var mark : int
var sum : int := 0
put "Enter marks"
for count : 1 .. 5

put count
get mark
sum := sum + mark

end for
put "Average is ", round (sum / 5)

This program is similar to the ComputeAverage program
which used a conditional loop. However this time we know that
there will be exactly five marks to be averaged, and we use a
counted loop. The counted loop begins with the keyword for.
Following this is count, the name of the index or counter for the
loop. The index of a counted loop is a variable of type int with
very special properties. It cannot be declared. Its declaration is
implied by its appearance in a for statement. In this program, it is
assigned the value 1 when the for loop is first entered and is
automatically incremented by 1 on each repetition. It has a value
2 the second time the loop is executed, 3 on the next, and
eventually 5 on the last. The range of its values is given by 1 .. 5.
The starting value of the index is given first, then two dots
followed by the finishing value of the index. You are not allowed
to assign a value to this counter yourself to interfere with the
automatic action of the for loop, but you may use its value in

112 Introduction to Programming in Turing

arithmetic expressions and output it. Outside the loop the
counter’s value is not available. We say it is only available within
the scope of the loop. We could not, for example, have written
the statement

put "Average is ", round (sum / count)

outside the loop because count is not available below end for.
The put statement in the body of the loop is legal since the value
of count is available there.

Here is a possible execution of the program.

Enter 5 marks
1
52
2
76
3
85
4
71
5
81
Average is 73

Here the 5 marks you enter are 52 76 85 71 81. When you
press Return after each mark is entered, it is read by the get and
the value of count is output on the next line. You can type all the
marks on a single line followed by Return and then the window
will look like this

Enter 5 marks
1
52 76 85 71 81
2
3
4
5
Average is 73

The get statement does not read any of the marks until you
press Return.

Chapter 6 : Repetition 113

It is good practice in programming to avoid using numbers,
like 5, directly in a for loop. It is preferable to define a constant,
say numMarks, with a value 5 and then use this instead. The
program would then have these changes

. . .
const numMarks := 5
put "Enter ", numMarks," marks"
for i: 1 .. numMarks
 . . .
put "Average is ", round (sum / numMarks)

This means that if you wanted to modify the program to read
six marks instead only one line need be changed, namely,

const numMarks := 6

Here is another program that allows the user to enter both a
start and stop value for the counted loop.

var start, stop : int
put "Enter the initial and final values for the loop: " ..
get start, stop
for i : start .. stop

put i
end for

6.3.1 Counting in Multiples

The loops in the previous section all increased the index by
one each time through the loop. It is also possible to increase the
index by any value. The by clause is used to increase the value
by a number greater than one.

Here is an example of a loop that outputs even numbers from
2 to 10 using the by clause.

for count : 2 .. 10 by 2
put count

end for

114 Introduction to Programming in Turing

The index of the for loop starts at 2. At each repetition, the
index increases by 2. If the index is greater than the second
range value (in this case 10), the loop exits.

It is never necessary for the index value to equal the second
range value. For example the loop

for count : 1 .. 10 by 5
put count

end for

 outputs the values 1 and 6.

6.3.2 Indenting the Body of Loops

Since we are trying to make programs easy to read it helps to
indent the body of the loop several spaces more than the
beginning and end of the loop. This is also called paragraphing
the program. It makes the program easier to understand because
you can actually see the scope of the loop.

The Turing Environment provides an Indent command from
the Edit menu that automatically indents a program in the
standard form. It also performs syntax coloring.

6.3.3 Loops that Count Backwards

The counted loop we have shown counts by ones, starting at
the first value of the range up to and including the last value. If
you want to count backwards by ones you can do it by this
statement:

for decreasing count: 5 .. 1
... body of loop ...

end for

Here the index count will start at 5 and go down by 1 until it
reaches its final value of 1.

A common error made when using a decreasing for loop is to
reverse the order of the upper and lower limits of the loop. Be

Chapter 6 : Repetition 115

careful because this will not give a syntax error and the problem
may go unnoticed. For example:

for decreasing count : 1 .. 5
... body of loop ...

end for

The body of the loop will never be executed because 1 is already
less than 5 and cannot be further decreased. Execution goes
from the top of the for loop and jumps to the end of the loop.
Similarly, the following program will not give an error but will do
nothing since 5 is already greater than 3.

for count : 5 .. 3
... body of loop ...

end for

6.3.4 Counted Loop Examples

Here are some examples of counted loops and the output that
they produce.

for count : 2 .. 10
put count

end for

Outputs 2, 3, 4, 5, 6, 7, 8, 9, 10. The loop starts with 2 and
counts up ending with 10.

for count : –4 .. 6
put count

end for

Outputs –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6. The loop starts with
–4 and counts upward ending with 6.

for count : –4 .. –1
put count

end for

Outputs –4, –3, –2, –1. The loop starts with –4 and counts
upward ending with –1. The fact that the first and second value of

116 Introduction to Programming in Turing

the range are both negative does not change how the loop
operates.

for count : 2 .. 2
put count

end for

Outputs 2. The loop starts with 2 and then exits the loop.

for count : 4 .. 1
put count

end for

Outputs nothing. The body of the loop is never executed
because the first value of the range is higher than the second
value.

for count : 1 .. 20 by 5
put count

end for

Outputs 1, 6, 11, 15. The loop exits when count is increased
to 21 which is greater than 20.

for count : 5 .. 15 by 20
put count

end for

Outputs 5. The loop exits when count is increased to 25 which
is greater than 15.

Loops can also count downward by using the keyword
decreasing in the for loop header.

for decreasing count : 7 .. 3
put count

end for

Outputs 7, 6, 5, 4, 3. The loop starts with 7 and counts
downward ending with 3.

for decreasing count : 1 .. 10
put count

end for

Chapter 6 : Repetition 117

Outputs nothing. The body of the loop is never executed
because the first value of the range in the decreasing loop is
lower than the second value.

for decreasing count : 17 .. 7 by 3
put count

end for

Outputs 17, 14, 11, 8. The loop starts with 17 and counts
downward by 3 ending when the index reaches 5 (which is lower
than 7).

6.3.5 Counted Loops with Exits

The counted loop can have an exit when condition inside its
body and this is often useful. Here is a program that reads words
until it has read ten words or has read the word stop.

% The "ReadWords" program
% Read words until ten have been read
% or the word "stop" is read
var word : string
put "Enter ten words one to a line, or finish with 'stop' "
put ""
for count : 1 .. 10

get word
exit when word = "stop"
put word

end for

Here is a possible execution.

Enter ten words one to a line, or finish with 'stop'

one
one
two
two
stop

118 Introduction to Programming in Turing

Notice that after the word stop is read you exit from the loop
even though the loop has not been executed ten times and the
word stop is not output by the put as the other two are. A blank
line is left after the prompt by the put with a empty string, that is,
quotes with no characters inside.

6.4 Random Exit from Loop
In Turing random numbers can be generated using predefined

procedures, randint for generating random integers and rand for
generating random real numbers. If we use the statement

rand (number)

in the program and number has been declared as a real variable
the value of number will be a real number randomly chosen
between 0 and 1 exclusive. These random numbers will be
uniformly distributed which means, for instance, that half of the
time the number would be less or equal to .5 and half the time
greater. Here is a program that counts from 1 to 10 but has a
25% chance of stopping after each count.

% The "CountUp" program
% Counts from 1 to 10 but has 25 percent chance of stopping
var number : real
for count : 1 .. 10

rand (number)
exit when number <= .25
put count

end for

To use the randint procedure for producing pseudo-random
integers we give a statement such as

randint (count, 1, 10)

Chapter 6 : Repetition 119

This will assign to the variable count, which must have been
declared as an integer variable, integer values uniformly
distributed between 1 and 10 inclusively.

Here is a program that uses randint to control the number of
times a loop is executed.

% The "CountDown" program
% Counts down from 10 to 1
% but stops at a random point
var last : int
randint (last, 1, 10)
for decreasing count : 10 .. last

put count : 2 ..
end for

In this program if the value of last is assigned by randint to be
6 then the output is

10 9 8 7 6

Five numbers are output.

6.5 Compound Conditions
Sometimes an exit condition is more complicated than just a

comparison. We can form compound conditions where two
simple conditions are combined using the logical or Boolean
operators called and and or. If two simple conditions are
combined using and then both conditions must be true before the
compound condition is true. For example, the compound
condition

6 < 7 and 5 = 3 + 2

is true because both simple conditions are true.
When two simple conditions are combined using or, the

compound condition is true if either one (or both) of the two is
true. For example,

120 Introduction to Programming in Turing

9 < 8 or 6 > 2

is true since the second simple condition is true even though the
first is false.

There is a Boolean operator which does not connect two
conditions but acts on only one. It is the not operator. For
example,

not A > B

which is the same as

not (A > B)

is true when the value of A is less than or equal to the value of B .
We can usually write conditions in such a way as to avoid using
the not operator. For example, the condition we just had could be
written as

A <= B

Conditions can be compounded several times by using and
and or several times. When writing very complicated compound
conditions it is best to use parentheses to make your meaning
clear rather than depending on the precedence rules for the
Boolean operators. These rules specify that and is done before
or.

6.6 Exercises
1. Write a program containing an infinite loop which outputs the

series of integers starting at 5 and going up by 5s. Revise this
program to output the integers starting at 5 and decreasing by
10s.

2. Write a program that endlessly tells you to "Have a good day".
Try stopping execution. Change it so that it is a program to
wish you a good day only six times.

Chapter 6 : Repetition 121

3. Write a program that reads words entered one to a line and
counts how many words have been entered before you give
the signal word "end" to stop execution of the program.
Experiment to determine what happens if you put several
words on a line as you enter them.

4. A series of marks is to be entered and averaged. Before you
enter the series you are to have the program ask you how
many marks there are in the series then read it in. Test your
program to see that it works for series of different lengths, say
four marks or six marks.

5. Write a program that announces at each repetition of a loop
the number of times it has executed the loop. Have it stop at
each execution with the message

Type 'more' to continue

A sample Execution window might be

Loop execution number 1
Type 'more' to continue
more
Loop execution number 2
Type 'more' to continue
more
Loop execution number 3
Type 'more' to continue
stop

6.aWrite a program to output a table of values of the integers
starting at 1 and their squares. Label the table at the top of the
columns. For example, your output might look like this

Number Square
1 1
2 4
3 9
4 16
5 25

Try to format the output so that it looks attractive. What
happens as the numbers get larger and larger? Change the

122 Introduction to Programming in Turing

program to output the first 100 integers rather than attempting
to go on forever.

6.b Modify your program so that in one for loop you output the
following

Num Square Num Square Num Square Num
 Square

1 1 21 441 41 1681 61 3721

2 4 22 484 42 1764 62 3864

continue through to

20 400 40 1600 60 3600 80 6400

7. Write a program using a loop counting backwards. Output the
index of the loop on each execution so the output is the same
as the count down for a rocket launch. Arrange the output so
that it is all on one line like this

5 4 3 2 1

8. Write a program to output a backwards count by 5s from 100
down to 5. Modify it so that you count from 100 down to 50.
Modify it so that before you start the count you can input a
number between 100 and 50 so that the program will stop
when the count would be less than the number input. For
example the execution might be like this:

What number do I stop at? 82
Stop when count less than 82
100
 95
 90
 85

9. Write a program to find the sum of a number of terms of the
infinite series

1 + x + x**2 + x**3 + x**4 + ...

Chapter 6 : Repetition 123

where the number of terms n to be evaluated and the value of
x are input before the summation begins. Experiment with
different values of n and x.

10.Write a program to compute the bank balance at the end of
each year for 10 years resulting from an initial deposit of
$1000 and an annual interest rate of 6%. Output for each year
end the number of the year, the initial balance, the interest for
the year, and the balance at the end of the year.

11.a A homeowner takes out a mortgage for $120,000 at 7.75%
per year. At the end of each year an amount of $24,000 is
paid. Write a program to show how the mortgage is paid off,
year by year, until nothing is owing.

11.b Assume that each month in the year has 30.5 days in it.
Give the number of the month and the day in the month in
which the mortgage is paid. (i.e. month #3, day #20)

12.Write a program to simulate the playing of a simple dice game
(played with one die). Roll the die to get a value from 1 to 6.
This we will call your point. Now keep rolling until you get the
same value (your point) again and see how many rolls it
takes. Program it so you can play this game repeatedly.

13. Ask the user for an integer between 1 and 50. Output all the
factors of that integer. Next, modify the program so that it
outputs the factors of each integer up to the value of the
integer input by the user.

14. Ask the user for an integer. Output the number of digits in the
integer. Then output the sum of the digits.(i.e. 1234 has 4
digits and their sum is 10).

15.Write a program to keep inputting integers until a perfect
square (for example 64) between 40 and 100 is entered. (This
is a difficult one!)

16.Write a program to generate 10 random real numbers
between:
a. 4 and 5
b. 0 and 10
c. 20 and 30
d. x and y where x and y are integer inputs.

124 Introduction to Programming in Turing

6.7 Technical Terms
repetition
loop statement
end loop
body of loop
stopping execution

(Control-Break)
conditional loop
condition
exit when statement
stopping signal
comparison operators (<,

>, =, >=, <=, not=)
collating sequence
ASCII character code
round function
initialization of variable

value in declaration
truncation of real number
div operator
counted loop
for loop
end for
index or counter of loop
range of index
paragraphing program
scope of loop
backwards counted loop
decreasing
multiple exits from loop
random number
rand

randint

pseudo-random sequence
procedure
compound condition
empty string
logical operator
Boolean operator

Chapter 6 : Repetition 125

and
or
not
true
false

127

Chapter 7

Character Graphics

7.1 Character Locations in the Execution Window

7.2 Creating a Graphical Pattern with Characters

7.3 Drawing in Color

7.4 Background Color

7.5 Hiding the Cursor

7.6 Animation with Graphics

7.7 Controlling the Speed of Animation

7.8 Pausing for User Input

7.9 Exercises

7.10 Technical Terms

128 Introduction to Programming in Turing

7.1 Character Locations in the Execution
Window

The output of Turing programs so far has been limited to a
display of lines of characters in the Execution window. These
characters have been values of expressions which are of real,
integer, or string type. The output on the lines followed in
sequence, one line after the next. To produce successful
graphics we must be able to output characters anywhere in the
window, in any order that we choose. We will be outputting one
character at a time at a location in the window which is selected
as the location of the cursor before the output instruction is
executed.

The Execution window can have characters in any one of 25
lines (or rows) and on each line in any one of 80 columns. To
output a character in a particular location in the Execution window
we first place the cursor at that location by a locate predefined
procedure in the form

locate (row, column)

The row can be any integer between 1 and 25 inclusive, and
the column any integer between 1 and 80 inclusive. To place the
letter T approximately at the center of the Execution window we
would give the instructions

locate (13, 40)
% 13th row down, 40th column across
put "T" ..

Notice that there are two dots in the put instruction. Without
the two dots the put instruction assumes that the line is complete
and would make the rest of the output line blank. To prevent this
happening we use the two dots which indicate that the cursor
should be left where it was. If we give the instructions:

locate (13, 40)

Chapter 7 : Character Graphics 129

put "T" ..
put "U" ..

the character U would appear after the T on the line in the
location (13, 41).

The following program writes Fred in the four corners and in
the middle of the Execution window.

locate (1, 1) % Not necessary.
put "Fred" ..
locate (1, 77)
put "Fred" ..
locate (13, 38)
put "Fred" ..
locate (25, 1)
put "Fred" ..
locate (25, 77)
put "Fred" ..

At the beginning of the program the cursor is always located at (1,
1) so it is not really necessary to include the first locate. However,
if the program segment is used in another program, the cursor
might not be located at (1, 1) so it is helpful to include the locate.

The .. after each put statement serves two purposes. First, it
stops the rest of the line from being erased and second, it stops
the window from scrolling when there is output on the last line. If
you removed the .. and ran this program again, the window would
scroll, causing the Freds at the top of the window to disappear
and the two Freds at the bottom to appear on different lines.

7.2 Creating a Graphical Pattern with
Characters

Now that you know how to output a character in the Execution
window in any position you can use this facility to draw simple
pictures. To begin a new graphic we clear the window so that we

130 Introduction to Programming in Turing

are not drawing on top of some other output. To do this we use
the procedure cls. The instruction

cls

will clear the window and then place the cursor at the location (1,
1), which is the top left-hand corner. Here is a program which
draws a line of asterisks down the window from top to bottom in
the column you specify.

% The "DrawVerticalLine" program
% Draws a vertical line of asterisks
var column : int
put "Choose a column for line ",

"between 1 and 80 inclusive"
get column
cls
for row : 1 .. 25

locate (row, column)
put "*" ..

end for

Notice that after the prompt appears and the column value
has been entered the window is cleared, using cls, so that the
prompt disappears and does not interfere with the appearance of
the asterisks.

7.2.1 Interactive Graphics

Suppose you wanted to have a graphics program with which
you were going to interact. For example, you might want to draw
a picture a little at a time. You would need to split the Execution
window into two parts: part for the graphic and part for the
prompting message and the input. We will call each part a
subwindow. The graphics will be in the top part of the window
from row 1 to row 20 and the prompting message and your input
will be at the bottom in lines 23 and 24. The two subwindows will
be separated by a line of minus signs in row 21.

Chapter 7 : Character Graphics 131

 Here is the program.

% The "DrawVerticalLines" program
% Draw a series of vertical lines, one at a time
cls
var column : int
% Draw line of minus signs between the two subwindows
locate (21, 1)
for count : 1 .. 80

put "-" ..
end for
% Could instead use put repeat ("-", 80)
loop

% Move cursor into prompt subwindow
locate (23, 1)
put " " % Clear the line
locate (23, 1)
put "Choose a column for the line between 1 and 80, end with -1: "..
get column
exit when column = – 1
for row : 1 .. 20

locate (row, column)
put "*" ..

end for
end loop

7.2.2 Diagonal Lines and Patterns

Here is a program to draw a diagonal line in the Execution
window starting at the point (1, 1).

% The "DrawDiagonalLine" program
% Draw a diagonal line in window
% starting in row 1, column 1
var row, column := 1
cls
loop

% Stop when diagonal touches bottom of window
exit when row > 25

132 Introduction to Programming in Turing

locate (row, column)
put "*" ..
% Move down diagonal
row := row + 1
column := column + 1

end loop

A more interesting program that is interactive can be obtained
by letting the user choose the starting point for the diagonal. If we
did this we would have to worry about the diagonal hitting the side
of the window as well as the bottom and the exit condition would
have to be

exit when row > 25 or column > 80

A still more interesting program is obtained if we let the
diagonal "bounce" off the edge of the window and be reflected
just as a hockey puck bounces off the boards. If it bounces off the
bottom we must start decreasing the row number but keep the
column number increasing. Here is the complete program for a
bouncing (or reflected) motion. The reflection is not exactly
accurate because the column change of one character width and
row change of one line spacing are not exactly equal for the
winsow.

% The "Bounce" program
% Simulates the action of a bouncing puck
var row, column : int
put "Enter starting row from 2-25 " ..
get row
put "Enter starting column from 2-80 " ..
get column
var rowChange, columnChange := 1
cls
loop

% The next six lines are a Selection construct
% See the Selection chapter if you do not
% understand them
if row = 25 or row = 1 then

rowChange := – rowChange

Chapter 7 : Character Graphics 133

end if
if column = 80 or column = 1 then

columnChange := – columnChange
end if
locate (row, column)
put "*" ..
row := row + rowChange
column := column + columnChange

end loop
If the drawing is formed too rapidly for you to enjoy the

bouncing you can slow it down by including a time-wasting for
loop right after the put statement that draws the asterisk.

Here is such a time wasting for loop.

var garbage : int
for i : 1 .. 10

% Perform a time wasting calculation
garbage := 237 * 26

end for

You can also use the built in procedure delay in order to slow
execution down. It has the form

delay (duration)

where the duration is in milliseconds (thousandths of a second).

7.3 Drawing in Color
Graphics can be made more interesting by displaying the

results in color. To choose a color for a character to be displayed
use the color predefined procedure in the form

color (chosenColor)

The chosenColor can be one of Turing’s predefined colors or a
number. These colors are white, blue, green, cyan, red, magenta,
brown, black, gray, brightblue, brightgreen, brightcyan, brightred,
brightmagenta, yellow, and darkgray. If using a number, the number

134 Introduction to Programming in Turing

can range from 0 to the maximum color number available in
Turing, usually 255.

Note: in Turing you may spell color as colour and gray as grey if
you prefer.

Here is a program that displays a box outlined by randomly
colored asterisks that blink.

% The "Marquee" program.
% Draws a box outlined by randomly colored asterisks.
var depth, width : int
put "Enter the width of the box (less than 60)"
get width
put "Enter the depth of the box (less than 20)"
get depth
cls

% Arrange to center box in window.
const topRow := (25 – depth) div 2
const leftColumn := (80 – width) div 2
var colorNo : int

% Draw top of box
locate (topRow, leftColumn)
for count : 1 .. width

% Choose a random color
randint (colorNo, 0, 15)
% Set the color.
color (colorNo)
put "*" ..

end for

% Draw bottom of box
locate (topRow + depth – 1, leftColumn)
for count : 1 .. width

randint (colorNo, 0, 15)
color (colorNo)
put "*" ..

end for

Chapter 7 : Character Graphics 135

% Draw left side of box
const sideTop := topRow + 1
const sideBottom := topRow + depth – 2
for row : sideTop .. sideBottom

randint (colorNo, 0, 15)
color (colorNo)
locate (row, leftColumn)
put "*" ..

end for

% Draw right side of box
const rightColumn := leftColumn + width – 1
for row : sideTop .. sideBottom

randint (colorNo, 0, 15)
color (colorNo)
locate (row, rightColumn)
put "*" ..

end for

7.4 Background Color
As well as controlling the color of the displayed characters, the

background for each character can be set to a variety of colors by
the colorback predefined procedure. It has the form

colorback (colorNumber)

If a blank is output, the background color is all that you see.
Here is a program to color the entire window blue.

% The "DrawSky" program
% Color the whole window blue
colorback (1)
for row : 1 .. 25

for column : 1 .. 80
locate (row, column)
% Output a blank
put " " ..

136 Introduction to Programming in Turing

end for
end for

Notice that the window is colored a character at a time.
Here is a program that colors the window green in a random

fashion.

% The "LeafFall" program
% Color parts of the window randomly
cls
% Set to color background green
colorback (green)
var row, column : int
loop

randint (row, 1, 25)
randint (column, 1, 80)
locate (row, column)
put " " ..

end loop

Run the program to see how long it takes for the leaves to
completely cover the window.

7.5 Hiding the Cursor
Sometimes the appearance of a graphical pattern can be

confused by the display of the cursor which always appears
following the last output or echoed input. This is particularly true
in animated graphics.

To hide the cursor we would use the predefined procedure
setscreen in the form setscreen ("nocursor"). To have the cursor
show again use setscreen ("cursor").

Chapter 7 : Character Graphics 137

7.6 Animation with Graphics
The illusion of continuous motion can be created by having a

series of still pictures in which an object is shown in slightly
different positions from one to the next. We will color the window
green then move a magenta asterisk around at random starting it
at the center. When it reaches the edge of the window we will
start it back at the center again.

% The "BrownianMotion" program
% Moves an asterisk around on
% the window like a smoke particle
% This is known as Brownian motion
% Color window green
colorback (green)
for row : 1 .. 25

put repeat (" ", 80) ..
end for

% Set character color to magenta
color (magenta)
setscreen ("nocursor") % Hide cursor
loop

% Start at center
var row := 13
var column := 40
loop

% Start over when asterisk goes off the window
exit when column < 1 or column > 80

or row < 1 or row > 25
locate (row, column)
put "*" ..
delay (100)
% Erase asterisk in old location by
% outputting a blank there
locate (row, column)
put " " ..
% Compute new value for row
randint (row, row – 1, row + 1)

138 Introduction to Programming in Turing

% Compute new value for column
randint (column, column – 1, column + 1)

end loop
play (">C<") % Sound a note
% This is explained in the Music chapter

end loop

7.7 Controlling the Speed of Animation
In the BrownianMotion program the particle moves about very

rapidly. It is possible that you might want to introduce a delay
between the put instruction which outputs the asterisk in a given
place and the put instruction which erases it. You can do this as
you have seen by inserting between the two put instructions a
call to the delay predefined procedure. The object of the delay
procedure is to just waste time. Nothing is actually being
accomplished other than that. You can control the length of the
delay by setting the duration to a variable like duration where
duration is an integer value which is a measure of how much time
you want to waste. Here is the time wasting call to delay.

delay (duration)

The statements for controlling the speed can be inserted into
the program right after the first 5 lines of comments. These are

var duration: int
put "Choose delay time for animation: " ..
get duration

The choice of a good value for duration must be found by
experimenting with various values on your computer to get the
speed of animation you want.

Chapter 7 : Character Graphics 139

7.8 Pausing for User Input
You can also instruct a program to pause until the user

presses a key. This is done using the statements

var reply : string (1)
getch (reply)

The getch procedure causes Turing to wait until a key is pressed
and the assigns the key to reply. The reply is a one-character
string and it is used in the getch (get a character) command. The
reply variable can only be declared once. Here is a program
segment that prompts the user to hit a key to resume the
execution.

put "Press any key to continue the program execution. " ..
getch (reply)

Once the user presses a key the execution will resume. The getch
(reply) instruction is useful because the user indicates when they
are ready to continue, whereas a delay waits for a period of time
set by the programmer.

To stop the character the user presses from being output to
the window, use

setscreen ("noecho")

To have the user input displayed on the window, use

setscreen ("echo")

7.9 Exercises
1. Write a program to plot a horizontal line of minus signs in any

row of the window that you specify.
2. Make the program of question 1 interactive so that you can

plot as many horizontal lines as you want, one after the other.

140 Introduction to Programming in Turing

3. Write a program to fill the Execution window with diagonal
lines of asterisks separated by diagonal blank lines. Note that
this can be accomplished easily by outputting lines of
alternating asterisks and blanks using, in turn, either

put repeat (" *", 40)

or

put repeat ("* ", 40)

(Note the space before and after the asterisk.) Try doing this
in color with light green asterisks on a background of blue.
Next, make the asterisks blink.

4. Write a program to draw a funny face in the window with its
center at any point you specify. Make the face of a size 9
characters by 9 characters. Arrange so that the color of the
face and the background can be input at the same time as
you specify its location in the Execution window. Refuse to
plot the face if it goes outside the window. You will need a
selection construct for this. See the next chapter for how to
draw a face in pixel graphics.

5. Write a program to plot a red box on a blue background. To
do this wash the whole window with blue then change the
background color to red and plot a box full of blanks.

6. Write a program to output a box which is tilted in the window
so that its top and bottom follow diagonal lines like those in
question 3. How would you fill the box with a color different
from the background.

7. By modifying the BrownianMotion program, arrange that a
picture of a funny face is moved randomly around the window.

8. Modify the BrownianMotion program so that you do not erase
the image of the particle each time but leave it as a trail when
it moves. Change the color of the trail randomly each time the
particle starts at the center. Use a black background.

9. Write a program that outputs a cat’s face at the center of the
window, erases it when you type the letter e, then plots it
again when you type the letter p.

Chapter 7 : Character Graphics 141

10.Modify the Bounce program so that the bouncing asterisk
changes color randomly on each bounce.

11.There are a number of characters available in the ASCII code
of the computer besides the ones given in the appendix. You
can explore these with this program

% The "CharValues" program
% See what characters are available
var value: int
loop

put "Enter a character value, 1 to 255 inclusive " ..
get value
put "Character whose value is ", value, " is ", chr (value)

end loop

Try to see what different characters you get. One of the
characters will produce a beep rather than appearing in the
window. What is its value? What happens when you try the
value 0?

12.Display the letters of the alphabet in different colors on one
line. The letters should appear one at a time and each letter
should appear slowly and then disappear when the next letter
appears (like the floors lighting up on an elevator).

13. Ask the user for the upper left row and column and the
bottom right row and column to represent the top left and
bottom right corners of a rectangle. Ask the user which
character they would like the rectangle to be created with.
Create the outline of the rectangle from the top-left corner to
the bottom-right corner given by the user in the character they
indicated.

14. Ask the user for the upper left row and column and the
bottom right row and column to represent the top left and
bottom right corners of a rectangle. Ask the user for the
number of the color they wish to use. Ask the user for the
character they wish to use. Create a filled in rectangle in the
color and character indicated by the user going from the top-
left to the bottom-right co-ordinates.

142 Introduction to Programming in Turing

7.10 Technical Terms
location of character in

the Execution window
locate

graphics
cls

interactive graphics

window
color

background color
colorback

animation
delay

Chapter 7 : Character Graphics 143

145

Chapter 8

Pixel Graphics

8.1 Pixel Positions in the Execution Window

8.2 Plotting Dots in the Execution Window

8.3 Changing the Execution Window Size

8.4 Drawing Lines

8.5 Drawing Circles and Ellipses

8.6 Animation

8.7 Drawing Arcs

8.8 Plotting a Mathematical Function

8.9 Using Text with Pixel Graphics

8.10 Background Color

8.11 Sound with Graphics

8.12 Current Values of Graphic Parameters

8.13 Exercises

8.14 Technical Terms

146 Introduction to Programming in Turing

8.1 Pixel Positions in the Execution
Window

So far we have plotted graphics using characters. In this part
we will plot graphics using dots or pixels in much the same way
as a television picture is plotted. With characters there were 2000
positions in the window where a character could be placed (25
rows with 80 character positions in each row). With pixel graphics
there are many more positions where dots can be plotted, over
150,000 in a standard output window (300 rows with 640 pixel
positions in each row). Pixel graphics have a much higher
resolution.

Pixel positions are given in terms of coordinates. The x-
coordinate is the position number along a line starting from the
left-hand side of the window. The first position has number 0; the
last position depends on the type of graphics. For a standard
output window it is 639. The y-coordinate is the row number
starting at the bottom of the window at 0 and numbering upward.
In a standard output window the last row number is 299. The x-
and y-coordinates correspond to the usual way of plotting graphs
mathematically. The origin of the coordinates is in the lower left-
hand corner of the window.

Turing Execution windows can be one of two types: text
windows or graphics windows. Text windows only support the put
and get commands. You cannot use the locate or graphics
commands in a text window. All output sent to a text Execution
window can be viewed using the window’s scroll bar. Saving the
text Execution window produces a text file with all the output.

Graphics windows allow all available output commands but
any output that scrolls off the top of the screen is lost. Saving a
graphics Execution window creates a graphics file.

Here are the commands to set the window to text or graphics.

setscreen ("text")
setscreen ("graphics")

Chapter 8 : Pixel Graphics 147

They must appear before any output.

8.2 Plotting Dots in the Execution Window
To place a dot in the window at a point whose coordinates are

(x, y) you use the statement

drawdot (x, y, c)

This calls the predefined Turing procedure drawdot. If the values
of x or y are outside the allowed range, the dot is not plotted.

Figure 8.1 Pixel Locations

The c is an integer (or integer variable) that sets the color of
the dot to be plotted. In graphics a zero value of c gives the same
color as the background, normally white. Color values range from
0 up to 255, although it is preferable to use the predefined names
for colors.

148 Introduction to Programming in Turing

Because different computers may use differently sized output
windows, rather than explicitly placing the size of the Execution
window in a program, Turing allows you to use maxx and maxy.

The maxx predefined function represents the maximum x-
coordinate available in the window and maxy represents the
maximum y-coordinate available in the window. By using maxx
and maxy, programs are resolution independent and will work
regardless of Execution window size.

Here is a program like the LeafFall program in the section 7.4
on character graphics. Execution windows in Turing are normally
in pixel graphics mode when the program begins. However, it is
possible to set the Turing environment to start the Execution
window in text mode. In text mode, output that scrolls off the end
of the Execution window can be viewed using the scroll bars.

To set the screen to the pixel graphics mode, we use the
statement

setscreen ("graphics")

This instruction is not absolutely necessary since a call to any
pixel graphics procedure, such as drawdot, will set the Execution
window to pixel graphics mode even if it was in text mode.

% The "Confetti" program
% Color pixels in the window randomly
setscreen ("graphics")
var x, y, c : int
loop

randint (x, 0, maxx)
randint (y, 0, maxy)
randint (c, 1, 15)
drawdot (x, y, c)

end loop

Chapter 8 : Pixel Graphics 149

8.3 Changing the Execution Window Size
By default, Turing creates an Execution window that 25 rows by
80 columns. It is possible to change the size of the Execution
window. This is done with the instruction

setscreen ("graphics:<width>;<height>")

where <width> and <height> are the desired width and the height
in pixels of the window. For example, to set the Execution window
to be 300 pixels wide by 500 pixels tall, the statement

setscreen ("graphics:300;500")

would be used. Note that there is a colon after the ÒgraphicsÓ
and a semicolon between the width and the height. The window
can also be sized to be the largest possible window that will fit on
the screen. This can be set with the instruction

setscreen ("graphics:max;max")

An Execution window’s size can also be set in terms of the
number of rows and columns using the instruction

setscreen ("screen:<rows>;<columns>")

With this, the Execution window is in graphics mode and <rows>
and <columns> are the desired number of rows and columns in
the window.

To determine the maximum color number available, a
program can use the maxcolor predefined function, which is gives
you the maximum allowable color number.

When you change the size of a window, the values returned
by maxx and maxy will also change. After the statement

setscreen ("graphics:300;500")

maxx would give 299 and maxy would give 499.
For example, a modification of the Confetti program to

produce output in a smaller window could be written this way.

150 Introduction to Programming in Turing

% The "Wedding" program
% Gives randomly colored dots with greater variety of
% color and higher resolution than CGA graphics
setscreen ("graphics:200;200")
var x, y, c : int
loop

randint (x, 0, maxx)
randint (y, 0, maxy)
randint (c, 0, maxcolor)
drawdot (x, y, c)

end loop

8.4 Drawing Lines
A line can be drawn from a point in the window with

coordinates (x1, y1) to a point with coordinates (x2, y2) in color c

Figure 8.2 Drawing a Line with drawline

with the statement

drawline (x1, y1, x2, y2, c)

Here is a program that draws lines from the center of the
window to points chosen randomly in random colors.

% The "StarLight" program
% Draws lines from center to random points
setscreen ("graphics")
var x, y, c : int
const centerx := maxx div 2
const centery := maxy div 2

Chapter 8 : Pixel Graphics 151

loop
randint (x, 0, maxx)
randint (y, 0, maxy)
randint (c, 0, maxcolor)
drawline (centerx, centery, x, y, c)

end loop

Here is a program that draws a rectangle, or box, of width w
and height h with its lower-left corner at (x, y).

The four drawline statements in the program could be replaced
by the single statement

drawbox (x, y, x + w, y + h, c)

where (x, y) is the lower left corner and (x + w, y + h) the upper
right corner of the box.

% The "DrawBox" program
% Draws a box of width, height,
% position, and color that you specify
var w, h, x, y, c : int
put "Enter width of box in pixels: " ..
get w
put "Enter height of box in pixels: " ..
get h
put "Enter x-coordinate of lower-left corner: " ..
get x
put "Enter y-coordinate of lower-left corner: " ..
get y
put "Enter color number: " ..
get c
setscreen ("graphics")
drawline (x, y, x + w, y, c) % Base of box
drawline (x + w, y, x + w, y + h, c) % Right side
drawline (x + w, y + h, x, y + h, c) % Top
drawline (x, y + h, x, y, c) % Left side
drawfill (x + 1, y + 1, c, c) % Fill the box

The last statement of this program will fill the whole rectangle
with the color number c. The form of this predefined procedure is

152 Introduction to Programming in Turing

drawfill (xinside, yinside, fillcolor, bordercolor)

The area to be colored must contain the point (xinside,
yinside) and be surrounded by the bordercolor. In this program
the border color and the fill color are the same.

The four drawline statements and the drawfill statement could
be replaced by the single statement

drawfillbox (x, y, x + w, y + h, c)

where (x, y) is the lower-left corner and (x + w, y + h) the upper-
right corner of the box. The instruction drawfillbox draws a box and
then fills it in with color c.

8.5 Drawing Circles and Ellipses
To draw an oval whose center is at (x, y), whose half-width is

xRadius, and whose half-height is yRadius in color c

(x, y) xRadius

yRadius

Figure 8.3 Drawing an Oval with drawoval

we use the statement

drawoval (x, y, xRadius, yRadius, c)

The resulting curve is an ellipse. To produce a circle we use
equal values for xRadius and yRadius. Here is a program that
draws a series of magenta circles radiating from the center of the
window until the circles touch the boundary of the window.

% The "Pow" program

Chapter 8 : Pixel Graphics 153

% Plots magenta circles of ever increasing radius centered
% in window until the edge of the window is reached
setscreen ("graphics")
const centerx := maxx div 2
const centery := maxy div 2
for radius : 1 .. centery

drawoval (centerx, centery, radius, radius, magenta)
end for

In Turing, the predefined procedure drawfilloval draws a filled
oval without the necessity of using drawfill. It has the form

drawfilloval (x, y, xRadius, yRadius, c)

and causes an oval to be drawn and filled with color c.

8.6 Animation
The effect of animation can be achieved with the Pow

program by erasing each circle after a delay before plotting the
next circle. To erase a circle you can re-plot it using the
background color, number 0. The predefined procedure delay can
be called to waste time between the plot of each circle in magenta
and the plot of the same circle in black. It has the form

delay (duration)

where the duration is in milliseconds. The Pow program can thus
be changed to the Ripple program in which a ripple starting at the
center of the window appears to move out, by adding the two
statements

delay (500) % Delay half a second
drawoval (centerx, centery, radius, radius, 0)

after the drawoval that produces the magenta circle. This method
of animation can be used for any simple form like a dot, line, box,
or oval.

154 Introduction to Programming in Turing

8.7 Drawing Arcs
A portion of an oval can be drawn using the predefined

procedure drawarc in the form

drawarc (x, y, xRadius, yRadius, initialAngle, finalAngle, c)

where in addition to the parameters required to draw the oval you
provide the initial and final angles in degrees measured counter
clockwise that the lines from (x, y) to the end points of the arc
make from the three o’clock position.

Figure 8.4 Drawing an Arc with drawarc

Here is a program that draws a series of circular arcs in green
with their center at the center of the window and their radius
changing by 1 pixel from 1 to 50. It is like the program Pow
except that a portion of the circle is drawn rather than the whole
circle. We will draw arcs of 60 degrees and a zero initial angle.

% The "CheeseSlice" program
% Draws a slice of green cheese
% that is one sixth of a round cheese
% by drawing circular arcs
setscreen ("graphics")
const maxRadius := 50
const xcenter := maxx div 2
const ycenter := maxy div 2
const theta := 60
for radius : 1 .. maxRadius

Chapter 8 : Pixel Graphics 155

drawarc (xcenter, ycenter, radius, radius, 0, theta, green)
end for

In Turing, you can also draw a filled in ÒsliceÓ by using the
drawfillarc procedure. The call looks like

drawfillarc (x, y, xRadius, yRadius, initialAngle, finalAngle, c)

and draws a ÒsliceÓ filled with color c.
In the chapter on advanced pixel graphics we will use a

different technique for drawing a pie chart but that requires more
mathematics.

8.8 Plotting a Mathematical Function
To keep things simple we will plot a mathematical function

that can be drawn with the origin of its coordinates at the lower
left of the window, the bottom of the window as the x-axis, and
the left side as the y-axis. We will plot the curve for the parabola

y = x ** 2

for values of x going from 0 to 14. We will let each unit in the x-
direction be represented by 20 pixels. One pixel is thus .05 units.
This means that in the x-direction we will use from pixel 0 to pixel
280. Each unit in the y-direction will be represented by 1 pixel
since y will vary from 0 to 196. What we have done is to choose a
proper scale for x and y so that the graph nearly fills the window.

% The "Parabola" program
% Draws the graph of the function y = x ** 2
% for x going from 0 to 14 in steps of .05
% Draw axes
drawline (0, 0, maxx, 0, blue)
drawline (0, 0, 0, maxy, blue)
for pixel : 0 .. 280

const x := .05 * pixel
drawdot (pixel, round (x ** 2), cyan)

156 Introduction to Programming in Turing

end for

In the chapter on advanced pixel graphics we will show an all
purpose mathematical graph plotting program.

8.9 Using Text with Pixel Graphics
Frequently we want to add text to a pixel graphics plot. The

range of character colors is the same as for dots. The color
number of characters is set by the statement

color (chosenColor)

The position of characters to be output is set using the
statement

locatexy (x, y)

The next characters output by a put statement will begin
approximately at the point (x, y). Note that the output will not
necessarily appear at exactly (x, y). This is because the
characters still appear in the 25 by 80 grid of character rows and
columns. Instead, the character appears at the location closest to
the x and y in the locatexy statement.

In the Parabola program we could have labelled the graph in
magenta by adding these statements just before the last two
statements.

color (magenta)
% Label x-axis
locatexy (160, 10)
put "x-axis"
% Label y-axis
locatexy (10, 100)
put "y-axis"
% Label graph of parabola
locatexy (100, 100)
put "Graph of parabola y = x**2"

Chapter 8 : Pixel Graphics 157

8.10 Background Color
The color of the background of the Execution window can be

set by using the statement

drawfillbox (0, 0, maxx, maxy, colorNumber)

This erases anything else in the window that is currently
displayed.

Here is a program to change the color of the window
randomly.

% The "FlashWindow" program
% Randomly changes the window color
setscreen ("graphics")
var c : int
loop

randint (c, 0, maxcolor)
drawfillbox (0, 0, maxx, maxy, c)
delay (500)

end loop

8.11 Sound with Graphics
A simple sound is often all that is required in a graphic display.

It can be obtained using the statement

sound (frequency, duration)

where the frequency is in hertz or cycles per second and the
duration is in milliseconds. The frequency should generally be
between 200 and 2000. Frequencies outside that range are too
low or high to be reproduced on a computer speaker.

Often, computers require a sound card to process the sound
or music commands.

158 Introduction to Programming in Turing

Here is a program that draws graphics and plays a sound that
goes up and then down.

% The "MakeSound" program
% Plays a rising then falling frequency along with colorful graphics
for i : 0 .. maxy

drawfillbox (0, 0, i * 2, maxy – i, i mod 16)
sound (i * 2 + 200, 50)

end for
for decreasing i : maxy .. 0

drawfilloval (0, 0, i * 2, maxy – i, i mod 16)
sound (i * 2 + 200, 50)

end for

8.12 Current Values of Graphic Parameters
You can find out the current values of various parameters

when you are in pixel graphics mode. A number of functions
provide such values.

whatdotcolor (x, y)

gives the color of the pixel at (x, y); the value of

whatcolorback

is the current background color number. Similarly the whatcolor
function returns the current text color.

8.13 Exercises
1. Write a program to plot a horizontal band 5 pixels wide

centered on any y-value you specify and with any color.

Chapter 8 : Pixel Graphics 159

2. Change the program so that you can continue to add such
horizontal lines as long as you want.

3. Write a program to draw a striped pattern of lines of random
color at an angle of 45¡ to the bottom of the window. Arrange
to stop execution when the window is completely covered.

4. Draw four circular arcs of width 5 pixels and radius 50 pixels
centered on the four corners of the window using the drawarc
procedure. What happens if you try to draw four complete
circles using these centers and the drawoval procedure?

5. Draw a slice of watermelon with red flesh and green rind.
Make it one quarter of a complete circular slice.

6. Write a program like the BrownianMotion program but instead
of having an asterisk, use a small magenta ball. Can you
arrange to display this on a window that is not black?

7. Write a program like the Bounce program only using a small
circle instead of an asterisk to represent a puck bouncing off
the boards in a hockey game. Make a sound as you bounce.
Use delay rather than a time-wasting loop.

8. Write a program to draw a cartoon of a smiling face in the
Execution window. Change the face to frown; now alternate
between these two faces.

9. Draw the face of a clown centered on the window. Use maxx
div 2, and maxy div 2 as the center of the face. Make the face
in any shape and size oval that you wish. Add a nose in the
center of the face. Add eyes so that they are symmetrically
placed on either side of the face (they should be equidistant
from the center of the face). Add a mouth, an arc. It’s center
coordinate should have maxx div 2 as its x. Add an ear on
each side of the head. Make them so that their center has
maxy div 2 for its y. Now that your clown is drawn, use
animation to close the eye and open it again. The eye should
close by reducing the size of the oval until it hits a size of 0. It
should open by drawing an eye which grows from size 0 to the
previous eye size. Use a delay to control the speed of the
closing and opening of the eye. Which eye you animate is
your choice.

160 Introduction to Programming in Turing

10. Modify the clown above so that the eye closes in a different
manner. The manner is of your choice. You may have it close
from top to bottom, like a eyelid coming down, from left side
and right side simultaneously until they hit the middle, or any
method you choose. Again make the eye open. Use delays to
control the speed of the closing and the opening.

11. Modify either clown#1 or clown#2. Have the eye close as well
as the mouth close. The actions should appear to be
simultaneous. Then have the eyes and mouth reopen, again
simultaneously.

12. Draw an arrow on the bottom left of the window using
drawlines. The point of the arrow should face right. Have the
arrow move across the window from left to right using delay to
control the speed. Once the arrow is off the window, make it
reappear on the bottom- right corner with the point facing left.

13. Draw an oval at the bottom left of the window. Have the oval
move from the bottom to the top of the window. Once it hits
the top, make it change direction and come to the bottom.
Once it hits the bottom, make it go diagonally to the top-right
corner of the window and then drop vertically to the bottom of
the window again (bottom- right).

14.Draw a ball in motion starting at the top of the window so that
its center moves to the position it would move to under gravity
in each step of the animation. The equation for the y-
coordinate of the center is

y = ymax – (1/2) * a * t ** 2

where a is the acceleration of gravity, namely 9.8 m sec–2,
and t is the time in seconds. If each pixel in the y-direction
represents 1 meter choose an appropriate time scale to watch
the motion: in real time, in slow motion, and in time lapse
motion.

15.Draw an animated graph to represent a ripple being reflected
from the top of the window when the wave of the program
ripple in this chapter strikes it. What happens when you let the
original ripple go on out beyond the top of the window?

Chapter 8 : Pixel Graphics 161

16.Write a program to plot either a cosine or a sine curve for
values of the angle going from 0 to 720 degrees. Draw the x-
and y-axes, and label the graph appropriately. Choose a scale
for plotting that has the graph more or less fill the window.
Remember that the values of cosine and sine vary between –
1 and +1.

8.14 Technical Terms
pixel
dot
plot
graphics mode
resolution
coordinate
axis
origin of coordinates
drawdot

aspect ratio
palette

setscreen

maxx

maxy

maxcolor

drawline

drawfill

drawbox

drawoval

getch

delay

drawarc

pie chart
scale
parabola
sound

whatdotcolor

whatcolorback

whatcolor

162 Introduction to Programming in Turing

163

Chapter 9

Selection

9.1 Simple Selection

9.2 Three-way Selection

9.3 Multi-way Selection

9.4 Case Construct

9.5 Commands for Action

9.6 Selecting from a Menu of Commands

9.7 Exercises

9.8 Technical Terms

164 Introduction to Programming in Turing

9.1 Simple Selection
So far we have looked at two of the three basic constructs in

computer programs. The first was a simple sequence of
statements, executed one after another, and the second was a
loop construct in which the body of the loop is executed
repeatedly. In this chapter we look at the selection construct by
which you can get the computer to select one of a number of
alternative courses of action.

Here is a program that reads in the mark in a course and
outputs a pass or fail standing. If the mark is 50 or more the
computer will say that it is a pass; if it is less than 50 it will say
that it is a failure.

% The "PassFail" program
% Read a mark and decide whether it is a pass or failure
put "Enter a mark " ..
var mark : int
get mark
if mark >= 50 then

put mark, " is a pass"
else

put mark, " is a failure"
end if

Remember the >= sign means is greater than or equal to. The
selection construct is sometimes called the if...then...else
construct. The statement (or statements) between the then and
the else are executed if the condition after the if is true. They are
called the then clause. If the condition is false, the statement (or
statements) between the else and the end if are executed.
These are called the else clause. Only one of the then or else
clauses is executed. Which one is selected depends on whether
the condition is true or false.

Chapter 9 : Selection 165

If there is nothing to be done when the condition is false, the
keyword else and the else clause are omitted. For example, here
is a program where the if statement does not have an else
clause.

% The "FindLargest" program
% Read 10 positive integers and find the largest
put "Enter 10 positive integers"
var number : int
var largest := – 1
for i : 1 .. 10

get number
assert number >= 0
if number > largest then

largest := number
end if

end for
put "Largest integer of ten is ", largest

The variable largest is initialized to be –1 which will be smaller
than any of the positive integers entered. Its type is implied to be
int since its initial value –1 is an integer. Whenever a number that
is bigger than the current value of largest is read, the value of the
variable is changed to that new value. When the loop is finished
the largest integer will have been stored in largest.

In the loop, after the get statement, there is a statement we
have not seen before which says

assert number >= 0

If the condition after the keyword assert is false a run-time error
will occur and execution of the program will be stopped. This
prevents you from continuing if you enter a negative integer by
mistake.

166 Introduction to Programming in Turing

9.2 Three-way Selection
While simple selection allows a choice between two

alternatives, often the solution to a given programming problem
requires more choices. For example, determining the price of a
movie ticket requires at least three alternatives based on the age
of the movie-goer. Here is a program that calculates the price of a
ticket based on age. This program calculates the ticket price for
three alternatives: senior, adult, and child.

% The "MoviePrice" program
% Reads age and gives ticket price
var age : int
loop

put "Please enter your age " ..
get age
assert age > 0
if age >= 65 then

put "Please pay $3.00"
put "You are a senior"

elsif age >= 14 then
put "Please pay $6.00"
put "You are an adult"

else
put "Please pay $2.50"
put "You are a child"

end if
end loop

This program will continue running until you interrupt it. The
assert statement checks to see if the age is positive so that
entering a negative age will stop it.

When an age is entered and has been passed by the assert
statement, the program enters the three-way selection construct.
This contains a new keyword elsif. If the condition age >= 65 is
true, the then clause is executed and the output is

Please pay $3.00

Chapter 9 : Selection 167

You are a senior

If the condition is false the person is either an adult or a child,
and their age is less than 65. After the elsif, which is a special
contraction of the two keywords else and if, we meet the second
condition. If this condition is true, that is, age >= 14 the next two
put statements are executed and the output is

Please pay $6.00
You are an adult

If the condition after the elsif is false, the statements after the
else are executed with the output

Please pay $2.50
You are a child

Depending on the age of the person, one of the three possible
alternatives is selected. We could call such a program construct
an if...then...elsif...then...else construct. Like the if...then...else
construct, the construct is terminated by the end if.

It is important to remember that the else must always come
after the elsifs in a selection statement.

When using three-way selection, it is important to order the if
statements correctly. Remember that as soon as the condition if
tested true, then the execution goes to the end if. If we were to
modify the program so that we switched the if’s as shown in the
BadMoviePrice program

% The "BadMoviePrice" program.
...

if age >= 14 then
put "Please pay $6.00."
put "You are an adult."

elsif age >= 65 then
put "Please pay $3.00."
put "You are a senior."

else
put "Please pay $2.50."
put "You are a child."

168 Introduction to Programming in Turing

end if
...

everyone would be adult or child. There would be no seniors. You
must order from lowest to highest or highest to lowest.

It is not necessary to have an else clause. Here is a program
that allows the user to buy three levels different products.

% The "Grocery" program
% Runs a cash register for a farmer's market stall selling a dozen corn
% for $2.25, bags of potatoes for $6.50, and artichokes for $1.75.
var total : real := 0
var product : int
loop

put "Enter product (1=Corn, 2=Potatoes, 3=Artichokes, 4=Quit): " ..
get product
if product = 1 then

total := total + 2.25
elsif product = 2 then

total := total + 6.50
elsif product = 3 then

total := total + 1.75
elsif product = 4 then

exit
end if
% The phrase "total : 0 : 2" outputs total to two decimal places
put "The running total is $", total : 0 : 2

end loop
put "Final total = $", total : 0 : 2

9.3 Multi-way Selection
Here is a program that has more than three alternatives. It

also uses a selection construct to test for improper data instead
of using the assert condition. In this way you ask the person
entering the data to correct it. This program reads a mark and
gives the corresponding letter.

Chapter 9 : Selection 169

% The "Grade" program
% Read mark and find corresponding letter grade
put "Enter marks, end with 999"
var mark : int
loop

put "Enter mark: " ..
get mark
exit when mark = 999
if mark >= 0 and mark <= 100 then

if mark >= 80 then
put "A"

elsif mark >= 70 then
put "B"

elsif mark >= 60 then
put "C"

elsif mark >= 50 then
put "D"

else
put "Fail"

end if
else

put "Improper mark"
end if

end loop

The multi-way if selection construct is in the body of a
conditional loop which starts with loop and finishes with end
loop. The exit condition of the loop is true when you enter the
dummy mark 999. After the first keyword if in the program is the
compound condition

mark >= 0 and mark <= 100

The and means that both these simple conditions must be
true: the mark must be between 0 and 100 inclusive. If it is true
the then clause is executed otherwise the else clause is
executed, and the words ÒImproper markÓ will be output.

The then clause contains a selection construct, a multi-way
one at that. This multi-way selection construct is nested inside
the then clause of the two-way selection construct. The nesting is

170 Introduction to Programming in Turing

emphasized by the indentation of the lines of the program. A
multi-way selection has one or more elsif...then clauses. Only
one of the then, elsif...then, or else clauses is executed. The
multi-way selection construct, like the two-way selection
construct, ends with the keywords end if.

Ordering of the if statements is also crucial in mutli-selection.
They must go from highest to lowest or from lowest to highest. Do
not mix up the order of the conditions as it will influence the logic
of the program. Examine the BadGrade program.

% The "BadGrade" program
...

if mark >= 60 then
put "C"

elsif mark >= 50 then
put "D"

elsif mark >= 80 then
put "A"

elsif mark >= 70 then
put "B"

else
put "F"

end if
...

A mark of 99, 100, 75, 65, or 60 would all be Cs. This program
would grant Ds to marks between 50 and 59 and Fs to all others.

9.4 Case Construct
When the choice among alternatives of a multi-way selection

is determined by an integer value you can use the case
construct. Here is a program that counts the number of votes for
three political parties called Left, Middle, and Right. To vote for
one of these enter a 1, or a 2, or a 3 respectively. To end the
voting procedure enter –1.

Chapter 9 : Selection 171

% The "Voting" program
% Read votes and count totals
const sentinel := – 1
put "Vote 1 for Left, 2 for Middle, 3 for Right, end with ", sentinel
var vote : int
var left, middle, right : int := 0 % initialize all three to 0
const leftVote := 1
const midVote := 2
const rightVote := 3
loop

put "Enter vote " ..
get vote
case vote of

label leftVote : left := left + 1
label midVote : middle := middle + 1
label rightVote : right := right + 1
label sentinel : exit
label : put "Invalid vote"

end case
end loop
put "Left" : 8, "Middle" : 8, "Right" : 8
put left : 4, middle : 10, right : 7

In the case statement, if the value of vote is 1 the statement
following label leftVote: will be executed and 1 will be added to
the total left. If the value of vote is the signal then the exit causes
the loop to stop. If the value of vote is not any one of those
specified after the label keywords then the label with no value
following it will be selected. This one acts like an else clause in
the if..then..else construct and must be the last label in the case
statement.

Notice the rather peculiar field sizes for the integers in the last
put statement. These will result in the lining up of the total votes
in each of the three categories with the headings.

Remember strings are left-justified in their fields and integers
(or reals) are right-justified. Try changing the size of each field to
8, the same as for the headings, and see the difference.

172 Introduction to Programming in Turing

The case construct does not allow you to do anything that the
if..then..else construct cannot do but sometimes it seems more
understandable. It is also more efficient.

9.5 Commands for Action
One of the important things you can do with the selection

construct is to issue commands to the computer to take different
actions depending on what the command is.

Here is an example program which uses the selection
construct.

% The "ShowEmotion" program
% Respond to various commands
var command : string
loop

put "Enter command: " ..
get command
if command = "stop" then

exit
elsif command = "sing" then

put "la la la"
elsif command = "cry" then

put "boo hoo"
elsif command = "laugh" then

put "ha ha ha"
else

put "I don't understand"
end if

end loop
put "That's all folks"

Here is a sample Execution window.

Enter command cry
boo hoo
Enter command laugh

Chapter 9 : Selection 173

ha ha ha
Enter command smile
I don't understand
Enter command stop
That's all folks

Notice that the response to the command ÒstopÓ is just exit
which takes you out of the loop to the statement after end loop.

9.6 Selecting from a Menu of Commands
Sometimes it is easier to present a list or menu of all the

possible commands available at a particular time and let the user
choose one. If the commands are numbered you can choose by
typing the number. If the command is a number we can use a
case statement instead of an if..then..elsif..else statement.

Here is a program to produce the same results as before.

% The "ShowEmotion2" program
% Here we select commands by number from a menu
var command : int
loop

put "Choose from 1-sing, 2-cry, 3-laugh, 4-stop: " ..
get command
case command of

label 1 : put "la la la"
label 2 : put "boo hoo"
label 3 : put "ha ha ha"
label 4 : exit
label : put "I don't understand"

end case
end loop
put "That's all folks"

You can use strings as well as integers in a case construct.
Here is a version of the ShowEmotion2 program that asks the
user to enter a string to represent the action.

174 Introduction to Programming in Turing

% The "ShowEmotion3" program
% Here we select commands by entering a string
var command : string
loop

put "Choose from sing, cry, laugh, stop: " ..
get command
case command of

label "sing" : put "la la la"
label "cry" : put "boo hoo"
label "laugh" : put "ha ha ha"
label "stop" : exit
label : put "I don't understand"

end case
end loop
put "That's all folks"

9.7 Exercises
1. Write a program to divide a class of students in two groups:

those whose last names begin with A to H and those that
begin with I to Z. Ask a person to enter their last name and
then output a message indicating which group they are in.
Repeat for each student.

2. Prepare a check for someone eating lunch in a restaurant. If
the meal costs more than $4.00 a 7% tax is to be added.

3. Write a program to classify athletes into three classes by
weight. The categories are: over 80 kg - heavyweight,
between 60 and 80 kg - medium weight, and less than 60 kg -
lightweight. Prepare the program so that a team of 10 athletes
can enter their weight one after another and be told what
category they are in.

4. Write a program to read a series of first names of people.
After reading the series (you will need a signal), output the
name that is alphabetically last.

5. Write a program to display a multiple choice question with five
different answers in the window and then depending on which

Chapter 9 : Selection 175

answer is chosen give a different comment. For example, your
question might be

Turing is:
(1) a great programming language
(2) a kind of car
(3) a mathematician
(4) a machine
(5) all of the above

The choice will be an integer from 1 to 5. Use a case
construct for this.

6. Write a program to give proper greetings to a person. Ask
what the occasion is and then give the appropriate greeting.
You can offer a menu of available occasions. Use a case
construct with string input.

7. Federal income tax is to be levied in stages on taxable
income. On the first $27,500 you pay 17%, on the next
$27,500 you pay 24%, and on the rest 29%. Write a program
to read in a taxable income and compute the federal tax
payable to the nearest cent.

8. Write a program to read in a series of positive integers and
output the range of the integers, that is, the interval from the
smallest to the largest.

9. Compute values of the function

f(x) = 3x2 – 2x+1

in steps of 0.1 between x=0 and x=1 inclusive and find the
value of x for which f(x) is a minimum.

10.Rewrite the Grade program of this chapter to use an assert
statement instead of a nested if...then construct. What
happens when you enter a mark that is negative or greater
than 100. Try misspelling elsif as else if and see what
happens.

11.Marks in a test are given out of 10 where 9 or 10 is A grade, 7
is B grade, 6 is C grade, 5 is D grade, below 5 is F grade. Use
a case construct to change the numerical test mark into the

176 Introduction to Programming in Turing

appropriate letter grade. Note that if you want to give the
same grade for both 9 and 10 you can label that case with two
values. For example,

label 9, 10: put "This is an A"

Arrange to enter a number of test marks for a class ending
with a mark of –1. At the end, output the percentage of the
class with each letter grade. To do this you must keep track of
the total numbers of marks and the numbers in each grade.

12.Write a program called Mystery which offers a menu of
mysterious alternatives. Use a case construct to do quite
different things in response to the different choices.

13. Write a program to input an integer from the user and output
all its factors and whether or not it is a prime number.
Remember that a prime number has only two factors, 1 and
itself. Three is prime while four is not.

14. Write a program to output all the prime numbers from 1 to 50.
15. Write a program that asks the user for 10 marks(percents)

and, at end of the run, outputs the highest mark and the
lowest mark.

16. Write a program to input a a series of positive integers until a
sentinel is entered. Use –1 as the sentinel. Output the product
of all the integers input.

17.Write a program to read in 5 marks that should be between 0
and 100 inclusive. Output an error message if a mark is not
between 0 and 100. For the valid marks, output ÒgoodÓ if the
mark is between 70 and 100 inclusive and ÒsatisfactoryÓ if
the mark is between 50 and 69 inclusive.

9.8 Technical Terms
selection construct
if...then...else construct
assert statement

two-way selection
three-way selection

Chapter 9 : Selection 177

if...then...elsif...then...else
construct

multi-way selection
case construct
label
improper data
menu

179

Chapter 10

Storing Data on the Disk

10.1 Data Files on Disk

10.2 Input Data from Disk Files

10.3 End-of-file for Data

10.4 Reading Lines of Text from a File

10.5 Exercises

10.6 Technical Terms

180 Introduction to Programming in Turing

10.1 Data Files on Disk
All the disk files in the examples so far have been programs.

Data, such as numbers that are output from a program, can also
be stored as files. We normally send our output data to the
window but it is possible to redirect the output data to a file on the
disk. Suppose we had this program in the Editor window.

% The "Counting" program
for Index : 10 .. 15

put Index : 3 ..
end for

If you give the command to run the program the Execution
window will look like this:

10 11 12 13 14 15

To run this program and store its output as a disk file called
Count, we give the output redirection command. Select the Run
with Args... menu item from the Run menu. This displays a
dialog box where you click the Output to: File button. Enter the
name Count into the file dialog box that now appears and then
click the Run button in this dialog box.

This time the results do not appear in the window but instead
they are stored on the disk in the file called Count. Now bring the
file Count into the Editor window using the Open command. The
data file containing the numbers 10 to 15 will be in the window.
You can list these numbers on the printer by selecting the Print
menu item from the File menu.

This is one way of getting printed output for the program. You
can also redirect the output to go to the printer directly in the Run
with Arguments dialog box.

You can also have the output go to the Execution window and
a file at the same time. You do this by selecting the Output to:
Screen and File button in the Run with Arguments dialog box.

Chapter 10 : Storing Data on the Disk 181

10.2 Input Data from Disk Files
You can use a data file as input for a program. Here is a

program that will read and output the numbers in the data file
Count.

% The "EchoInput" program
put "Enter five integers"
var number : int
for i : 1 .. 5

get number
put number

end for

Here the index or counter of the for loop has a one-letter
name i . We often use letters like i, j, k as index variables when
our imagination for making up good variable names fails us. We
could have used index or counter but that gets boring.

This program expects five integers to be input. It will then
echo these integers. Here is a example Execution window in
which 10 is typed and then echoed, then 11 is typed and echoed,
and so on.

Enter five integers
10
10
11
11
12
12
13
13
14
14

Now suppose instead we redirect input to come from the file
count rather than the keyboard. Select the Run with Args...
menu item from the Run menu, select the Input from: File

182 Introduction to Programming in Turing

button, and choose the file Count from the file dialog that is
displayed. The Execution window will now look like this

Enter five integers
10
11
12
13
14

The input does not appear in the window. The result of the
put statement shows you what was input. If you wish to have the
input echoed in the window when it is read from a file, select the
File with Echo button in the Run with Arguments dialog box.

You can redirect both the input and the output at the same
time. Select the Run with Arguments... menu item from the Run
menu, select the Input from: File button, and select Count from
the file dialog. Then click the Output to: File button and enter list
in the file dialog that appears. Now nothing appears in the
Execution window, but if you check the directory you can see that
the file List is now there. Try bringing it into the Editor window
using the Open command to see what it is like. Try printing it.

If you want to have the input read from a file and the output go
to a file but still see the program executing, you can select Input:
File with Echo and Output: File and Screen.

10.3 End-of-file for Data
We have looked at programs that read from input until a

special signal such as –1 is found in the data. We will now look at
programs that detect the end of the data by checking for the end-
of-file marker. All files on a computer contain a marker after the
last piece of data in a file. Programs can check for this marker.
Using a check for end-of-file eliminates the need to add a special
signal to the data.

Here is a program that reads a series of grades and averages
them. It is very much like the ComputerAverage program of the

Chapter 10 : Storing Data on the Disk 183

chapter on repetition but now the signal will be the end-of-file
marker. Since we will be reading from a disk, a prompt is not
appropriate. We need prompts only when we are interacting with
a person at the keyboard.

% The "ComputeInputAverage" program
% Computes the average of a series of grades
% stored in a disk file
var grade : int
var count, sum : int := 0
loop

% Skip over any white space to next grade or to eof
get skip
exit when eof
get grade
sum := sum + grade
count := count + 1

end loop
put "Average mark is ", round (sum / count)

 In the ComputeInputAverage program the variables count
and sum are initialized to zero in their declaration. They could
have also been declared and initialized with the statement

var count, sum := 0

In this case the variables count and sum are initialized to zero
in their declaration but their type int is omitted. The type in a
declaration can be omitted if you are initializing; the type of the
initial value is automatically given to the variable. If the type is
omitted in the declaration of a real variable, the initial value
cannot be an integer (such as 0) but would need to be a real
value (such as 0.0).

The first statement in the loop uses the special input
statement get skip which moves to the next number or the end-
of-file marker. The value of eof is true if we are at the end of the
file, otherwise it is false. We need to use get skip in the program
because white space after the last number can prevent eof from
being true.

184 Introduction to Programming in Turing

When entering input data from the keyboard the key
combination Control+Z indicates the end of file. (On some
computers it is Control+D.)

10.3.1 End-of-file with Strings

Here is a program that counts the number of words in a file
text.

% The "WordCount" program
% Counts the number of words in a text
var count : int := 0
var word : string
loop

get skip
exit when eof
get word
count := count + 1

end loop
put "There are ", count, " words in the text"

Run the program taking input from a file called Text (redirect
the input to come from the file Text). Notice that a get skip is
needed with strings just as it is with numbers when you are
looking for the end of file.

10.4 Reading Lines of Text from a File
So far in reading text we read in a token at a time, a token

being a string of characters surrounded by white space or a string
in quotes. You can read an entire line of text at a time. This form
of input is known as line-oriented input (as opposed to token-
oriented input).

Here is a program that reads lines of text and outputs each
line along with its line number.

Chapter 10 : Storing Data on the Disk 185

% The "ListInput" program
% Read text and output a line at a time
% numbering each line
var lineNumber := 0
var line : string
loop

exit when eof
get line : * % Read an entire line
lineNumber := lineNumber + 1
put lineNumber : 4, " ", line

end loop

The important instruction is the get line : *. The colon followed
by the asterisk causes an entire line of input to be read at once
and stored in the string variable line. This is also how you can
read in a complete name with spaces without having to force the
user to put quotes around the name.

 You can use a program as text. For example, if the ListInput.t
program is stored on the disk as the file ListInput.t it can be listed
with line numbers by redirecting input to ListInput.t to come from
the file ListInput.t. The Execution window would look like this

1 % The "ListInput" program
2 % Read text and output a line at a time

... and so on ...

This is an interesting example in which a program, ListInput.t
reads its own text.

10.5 Exercises
1. Prepare a file of data called Marks that can be used as input

for the ComputeAverages program of the chapter on
repetition. Run the program redirecting the input to be read
from the file Marks.
Two versions of the Execution window are shown for
ComputeAverages in the repetition chapter: one for the case
where the marks are entered from the keyboard one-to-a-line,

186 Introduction to Programming in Turing

and one for the case where all five marks are entered before
the Return is pressed. How does your Execution window
compare with these? Try two versions of your input data file
Marks to see what difference it makes. How could the
ComputeAverages program be modified so that the Execution
window is the same as one or both of the keyboard versions?

2. Try redirecting the output of the DrawSky program in Chapter
7 to a file named Blue . What do you see in the window? Now
bring the output into the window by bringing Blue into the
program window
What happens? Is output redirection suitable for graphics
programs?

3. Prepare a data file called Final that will contain marks of
students on final exams in a suitable form for input to the
Grade program of the chapter on selection (chapter 9). Bring
the Grade program into the window (or enter it if you do not
have it saved on the disk). Now run the program redirecting
input to be read from the file Final and the output to be written
to the file Letters.
Compare the file Letters with what you would get if you
entered the same exam results at the keyboard. How can the
Grade program be modified so the two are identical?

4. Prepare a file of input data suitable for the ShowEmotion
program from Chapter 9. Store it on the disk under the name
Examples. Now bring the ShowEmotion program into the
window and then give the command to run it with data coming
from the Examples file.
How does the Execution window compare in appearance to
the one you would have if you typed in the same data from the
keyboard? Can you change the ShowEmotion program so that
the Execution window will be the same, that is, so that you
know what the input values are?

5. Having changed the ShowEmotion program to echo the
values of input data so that they appear on the output when
the input is from disk, redirect the output to a file called
Answers

Chapter 10 : Storing Data on the Disk 187

Check the list of files stored. Read the Answers file into the
Editor window. Now print it.

6. Enter the ComputeInputAverage program of this chapter. Try
using it with the input data coming from the keyboard. Now
prepare a data input file on disk called Class and run
ComputeInputAverage with the input coming from the file
Class.
Try modifying the program by removing the get skip
instruction and see if you detect any difference in
performance. Try giving the eof right after the last number and
also giving a Return followed by the eof.

7. Type in the WordCount program of this chapter and use it to
count the words in the program itself by redirecting input to
come from the file WordCount.t (in other words, itself).
What gets counted as a word?

8. Type in the ListInput program of this chapter and list some of
the programs and data files you have on the disk.

9. Create a Story.txt file. It can contain any fiction you like. Write
a program to receive input from this file and output it to the
window with only four words to a line.

10. Using the Story.txt file, write a program that reads the file for
input and then outputs the story to the window so that the first
word is sent to the Execution window the second is redirected
to Story2.txt. This pattern should continue until the end of the
file. At the end output to the window: the total number of
words sent to the window, the total number of words sent to
the file, and the total number of words handled from story.txt.

11 What happens when you direct output to a file that already
exists? (What happens to the original data in the output file?)
Try this with a program.

10.6 Technical Terms
data files on disk

188 Introduction to Programming in Turing

redirecting input from
keyboard to disk

printing a file in window
redirecting output from

screen to disk

end-of-file marker
get skip
eof predefined function
keyboard end-of-file

(Control+D)
reading lines from file
line-oriented input

Chapter 10 : Storing Data on the Disk 189

191

Chapter 11

Handling Strings

11.1 Length of a String

11.2 Joining Strings Together

11.3 Selecting Part of a String

11.4 Searching for a Pattern in a String

11.5 Substituting One Pattern for Another

11.6 Eliminating Characters from Strings

11.7 Bullet-Proofing Programs

11.8 Exercises

11.9 Technical Terms

192 Introduction to Programming in Turing

11.1 Length of a String
In this chapter we will look at ways that you can work with

strings. All the different operations that you need to perform can
be accomplished by two basic string operations: joining two
strings together and selecting a part of a string. As well, you need
to use the predefined function length to tell you the number of
characters in a string.

It is easy to find the length of any string stored in a variable
using the Turing predefined function length.

Here is a program that outputs the length of words.

% The "WordLengths" program
% Read words and find their length
put "Enter one word to line, end with 'end' "
var word : string
loop

put "Enter word: " ..
get word
exit when word = "end"
put word, " has ", length (word), " letters"

end loop

Here is a sample Execution window.

Enter one word to line, end with 'end'
Enter word banana
banana has 6 letters
Enter word kangaroo
kangaroo has 8 letters
Enter word end

Chapter 11 : Handling Strings 193

11.2 Joining Strings Together
The operation of joining strings together is called catenation

and is accomplished using the operator +. When this operator is
between two numbers it means that they are to be added. When
the + operator is between two strings it means they are to be
joined. Here is an example.

put "O" + "K"

It produces the output OK; the two strings are joined.
Here is a program that reads five words and joins them into a

line of output.

% The "WordsOnLine" program
% Reads 5 words and outputs all on a line
var word : string
var line := "" % Initialize line to the empty string
put "Enter 5 words"
for i : 1 .. 5

get word
line := line + word + " "

end for
put line

Here is a sample Execution window.

Enter 5 words
Why am I entering this many words
Why am I entering this

If the words were entered one to a line the output would be given
right after you enter the 5th word and the window would look like
this

Why
am
I
entering

194 Introduction to Programming in Turing

this
Why am I entering this

Notice that in the declaration of the string variable line it is
initialized to the empty string. In the for loop the most recently
read word is catenated onto the line and a blank is catenated on
to that; the result is stored in the variable line. If the blank were
not catenated the output would be

WhyamIenteringthis

11.3 Selecting Part of a String
A part of a string is called a substring. We define a substring

by placing in parentheses after the name of the string: the
position of the first character in the substring, then two dots,
followed by the position of the last character in the substring. The
character positions of a string are numbered starting on the left
from 1 to the length of the string. The output for this program

const word := "magnet"
put word (4 .. 6)

would be net. The substring net consists of the 4th to the 6th
characters of magnet.

If the substring goes from some position to the end of the
string then the last position can be written as an asterisk. So the
program we just had would give the same result if the put
statement were

put word (4 .. *)

Here is a program to read a series of words and output the
last three characters of each word until the word quit is read.

% The "FinalThreeLetters" program
% Read words and if possible give last three characters
var word : string

Chapter 11 : Handling Strings 195

put "Enter words one to a line, end with 'quit' "
loop

put "Enter word: " ..
get word
exit when word = "quit"
if length (word) >= 3 then

put word (* – 2 .. *)
else

put "Word has fewer than 3 characters"
end if

end loop

Notice that the third last character can be given as * – 2 in the
substring specification.

You must not ask for a character position that is not present,
for example, a character position whose number is less than 1 or
greater than the length of the word or an execution time error will
result. In general, the first character position’s value must be
between 1 and the last character position’s value inclusive. In the
particular case where it is one greater than the last character
position the result is an empty string. For example, word (length
(word)+ 1 .. *) gives the empty string.

Here is a sample Execution window for the FinalThreeLetters
program.

Enter words one to a line, end with 'quit'
Enter word speaking
ing
Enter word softly
tly
Enter word to
Word has fewer than 3 characters
Enter word quit

If we had not tested in the if statement to see if the word was
at least 3 characters long and had asked for the last three
characters of to we would have been told of an execution error.
You should try this program and see what you get

const word := "to"

196 Introduction to Programming in Turing

put word (* – 2 .. *)

There will be an execution error because * – 2 attempts to locate
a character before the first character.

If the substring is to be a single character you can just put that
character’s position in parentheses; a range is not required.

Here is a program that outputs each letter of a word on a
separate line.

% The "LetterAtATime" program
% Read a word and output it a letter-at-a-time
var word : string
put "Enter words, end with 'tired' "
loop

put "Enter word: " ..
get word
exit when word = "tired"
for i : 1 .. length (word)

put word (i)
end for

end loop
put "Why not take a rest?"

Here is a sample Execution window.

Enter words, end with 'tired'
Enter word sick
s
i
c
k
Enter word tired
Why not take a rest?

Chapter 11 : Handling Strings 197

11.4 Searching for a Pattern in a String
We have seen several examples where we recognized a word

such as stop or quit that we have read. We also need to be able
to recognize if a certain pattern of characters is in a string or not.
For example, we might want to look for words containing the
pattern ÒieÓ. To do this we use the predefined Turing function
index whose value is the character position where a pattern first
matches a string. The value of

index (string, pattern)

is the first position from the left in string where the pattern
matches. For example,

index ("getting", "t")

has a value 3. There is a second occurrence of t in getting at
position 4. The value of

index ("dandelion", "lion")

is 6. If there is no match at all the value of index is zero.
Here is a program to detect words that contain the letter s.

% The "HaveAnS" program
% Test to see if a word contains an "s"
var word : string
put "Enter a series of words, end with 'last' "
loop

put "Enter word: " ..
get word
exit when word = "last"
if index (word, "s") not= 0 then

put word, " contains an 's' "
else

put word, " does not contain an 's' "
end if

end loop

198 Introduction to Programming in Turing

Here is a similar program to see if a word contains two
occurrences of a pattern. It is a more difficult process. This time
the program will ask you to enter the pattern you want to test for.

% The "DoublePattern" program
% Test to see if a word has two occurrences of a pattern
var word, pattern : string
put "Enter the pattern you want to test for: " ..
get pattern
const size := length (pattern)
put "Enter a series of words"
put "Enter 'finis' to stop"
loop

get word
exit when word = "finis"
const place := index (word, pattern)
if place = 0 then

put word, " contains no occurrences of ", pattern
elsif index (word (place + size .. *), pattern) = 0 then

put word, " contains one occurrence of ", pattern
else

put word, " contains at least two occurrences of ", pattern
end if

end loop

In this program if you find that the word contains one
occurrence of the pattern then you must see if there is a second
occurrence. The second search for the pattern must be in the
substring of word starting after the end of the first occurrence and
going to the end.

To see whether or not you have the correct expressions for
the conditions try working through a test case or two on paper
rather than on the computer. For example, suppose the pattern is
ÒsÓ and the word is ÒwallsÓ. The value of size is 1 and place is
5. The value of place + size is 6. The value of the substring word
(place + size .. *) will be the empty string which is what you get if
the value of the beginning of the substring range is one greater
than the length of the string which is 5. Now try the word
ÒglassÓ. The value of place will be 4 and place + size will be 5.

Chapter 11 : Handling Strings 199

The substring word (place+size .. *) is then really word (5 .. 5)
which is just the last character.

11.4.1 Counting Patterns in a Word

The previous program shows how to count the patterns in a
word. If the word is ÒbananaÓ and the pattern is ÒaÓ then the
program will tell you that there are at least two occurrences of
ÒaÓ in ÒbananaÓ. It is also possible to modify the program so
that the exact count will be outputt.

Here is the revised program that inputs the pattern and
outputs the count.

% The "DoublePattern2" program.
var pos, count, size : int
count := 0
var word, pattern : string
put "Enter the pattern that you want to search for: " ..
get pattern
put "Enter the word you want to search through: " ..
get word
size := length (pattern)
loop

pos := index (word, pattern)
exit when pos = 0
count := count + 1
word := word (pos + size .. *)

end loop
put "The number of occurrences: ", count

You can see how count changes by tracing through the program.
The following trace shows how the DoublePattern2 program runs
when pattern is set to ÒaÓ and word is set to ÒbananaÓ.

count=0
size=1
first time through loop

pos=2
count=1

200 Introduction to Programming in Turing

word=nana
second time through loop

pos=2
count=2
word=na

third time through loop
pos=2
count=3
word=""

fourth time through loop
pos=0

loop exited and the count of 3 is output

11.5 Substituting One Pattern for Another
We showed examples where we looked for a pattern in a

word. We could have substituted a different pattern after we
found the one we were searching for. This would then be a
search and substitute process. For example, in the program
HaveAnS, in the previous section we could have substituted
another letter such as ÒtÓ for the ÒsÓ.

In Turing, you cannot assign to a substring. In order to change
part of a string, you must rebuild the string. For example, to
change the letter ÒsÓ to ÒtÓ in a string, you would create a new
string by concatenating the part of the string up to (but not
including) the ÒsÓ with the ÒtÓ and then concatenating the
result with the part of the string from just past the ÒsÓ to the end
of the string.

Here is the assignment statement that would do it. Place this
statement after the put in the then clause

word := word (1 .. index (word, "s") – 1) + "t" +
word (index (word, "s") + 1 .. *)

The new word is made up of three pieces catenated. The first
piece is the substring of the original word up to the position of the
pattern. Next comes the substituted letter ÒtÓ, then the substring

Chapter 11 : Handling Strings 201

of the original word starting after the pattern and going to the end.
If the pattern is already at the end of the word this last substring
will be a empty string.

Sometimes in programs the same function is evaluated
several times. It is often more efficient to assign its value to a
variable, then use the variable instead of reevaluating the
function. For example, in the twice program we assigned to the
variable place the value of index (word, pattern).

11.6 Eliminating Characters from Strings
Sometimes it is useful to be able to eliminate a certain class of

characters from a string. Here is a program which removes all the
vowels from a word.

% The "RemoveVowels" program
% Eliminates the vowels from a word
var word : string
put "Enter a series of words, end with '*' "
const vowels := "aeiou"
loop

get word
exit when word = "*"
var newWord := "" % empty string
for i : 1 .. length (word)

if index (vowels, word (i)) = 0 then
% Letter is not a vowel
newWord := newWord + word (i)

end if
end for
put "Word without vowels ", newWord

end loop

In the for loop each letter of word, namely word (i), is tested
as the pattern against the string of vowels. If it is found in the

202 Introduction to Programming in Turing

string of vowels the index function will not be zero and we do not
catenate it onto the new word we are forming.

Here is a sample Execution window with the keyboard input in
bold.

Enter a series of words, end with '*'
jump
Word without vowels jmp
diagonal
Word without vowels dgnl
*

We can also remove a pattern from within a string using word
by

word := word (1 .. pos – 1) + word (pos + size .. *)

where pos is the position of the pattern in the string and size is
the size of the pattern. This redefines word so that it contained
the part of the word before the pattern (word (1 .. pos – 1)) and
the part of the word after the pattern (word (pos + size .. *)).

Here is a modification of the DoublePattern2 program that
outputs the string with all occurrences of a pattern removed.

% The "DeletePattern" program.
var pos, size : int
var word, pattern : string
put "Enter the pattern that you want to search for: " ..
get pattern
put "Enter the word you want to search through: " ..
get word
size := length (pattern)
loop

pos := index (word, pattern)
exit when pos = 0
word := word (1 .. pos – 1) + word (pos + size .. *)

end loop
put "Here is the word with the pattern removed: ", word

Chapter 11 : Handling Strings 203

11.7 Bullet-Proofing Programs
Another important consideration when designing programs is

making sure that the user cannot crash the program by entering
unexpected data. This is called Òbullet-proofingÓ your program.
The most common kind of error that can occur is if the user
enters a letter of the alphabet as input when asked for a number.
When this happens, Turing is unable to read the input as a
number and the program stops execution and outputs an error
message. It creates a run-time error.

Reading all input as strings avoids this problem. The string is
converted to an integer or real only after making certain that the
string contains valid input. If the string does not contain valid
input, the program can ask the user to reenter a proper value.

Here is an example of a program segment that gets an integer
value from the user.

var input : string
var age : int
put "Enter your age: " ..
loop

get input
exit when strintok (input)
put "Not a number. Please enter an integer: " ..

end loop
age := strint (input)

The program prompts the user for input and then enters the loop.
In the loop, the user inputs their age into the string variable input.
The program then checks whether input can be converted to an
integer. The strintok (pronounced strint-okay) built-in subprogram
examines input and returns true if input can be converted to an
integer and false otherwise. If input cannot be converted to an
integer, the program outputs an error message and loops back,
asking for the another input. If the user enters valid input the
program leaves the loop. The string is then converted into an
integer using the strint function.

204 Introduction to Programming in Turing

A similar program segment for reading in a real number can
be created using the strrealok and strreal perdefined subprograms.

11.8 Exercises
1. Write a program to count the total number of characters in a

series of 10 words that you enter, and compute the average
word length.

2. Write a program to output the first and last letters of a series
of words. A sample Execution window might be:

Enter a series of words one to a line, end with
'wow'
Enter word pig
pg
Enter word dog
dg
Enter word a
Word has only 1 character
Enter word wow

3. Write a program which produces a line of asterisks of a given
length by catenating enough single asterisks in a for loop.
Here is a sample Execution window:

Enter a negative number to stop
How many asterisks do you want? 8

How many asterisks do you want? 5

How many asterisks do you want? –1

The repeat predefined function can be used to do this too. For
example,

put repeat ("*", 5)

Chapter 11 : Handling Strings 205

will result in the output *****. Patterns of more than one
character can be repeated also, for example, repeat ("Hi", 3)
produces three ÒHiÓs.

4. Rewrite the program of question 3 so that the pattern to be
repeated by catenation is read into the computer. Try several
patterns.

5. Write a program to change words made up of lower case
letters into a secret code. The letter a is to be changed to b, b
to c, and so on; z becomes a. To do this you must know a little
about the ASCII code shown in the appendix. The predefined
function ord has a value equal to the ASCII code of the letter
which is its parameter. For example, ord ("a") has the value 97
which is the ASCII equivalent of the letter a. The letter b has
the code 98. The predefined function chr can translate back
from a value to a letter. For example, the function chr (97) has
a value the character a. To change an a to a b you would use
both functions, one after the other. The value of

chr (ord ("a") + 1)

is b. In this way you can convert to the secret code. Try your
luck at this.

6. Write a program to read a series of words from the keyboard
and output the reverse word with the letters backward. Keep
all the letters of the word in the same case: upper or lower.
Here is a sample window.

Enter a word COW
The reverse word is WOC
Enter a word madam
The reverse word is madam
(etc.)

If the reverse word is the same as the word, the word is a
palindrome. If you find this to be the case output a line saying

This is a palindrome

7. Read a series of words and output the middle letter of each
word that has an odd number of letters or announce that the

206 Introduction to Programming in Turing

word has an even number of letters. Here is a sample
Execution window:

Enter word brine
The middle letter is i
Enter word bright
The word has an even number of letters
(etc.)

Use the end-of-file signal to stop the repetition. Try putting the
input on a disk file called list and redirect the input to be from
it. Does your output look the same as before? How could you
change your program so that you see the word that is read.

8. Write a program which gives the user this menu.
Menu
1. Count a pattern
2. Eliminate a pattern
3. Substitute a pattern
4. Exit

If the user chooses #1 - ask for a word and a single letter
pattern. Display the number of times the pattern occurs in the
word. (banana, a, 3)
If the user chooses #2 - ask for a word and a single letter
pattern. Display the word without the pattern (banana, a, bnn)
If the user chooses #3 - ask for a word, a single letter search
pattern and a single letter replacement pattern. Display the
word with the alterations. (banana, a, o, bonono)
If the user chooses #4 - quit the program
Use getch and clear the Execution window between options.

9. Modify alternative 3 in Exercise 8 so that it properly handles
the case of replacing each o in moon by oo.

10. Using the RemoveVowels program as your guide, write a
program which inputs a string and then outputs each
character in the string and whether or not the character is a
vowel, a consonant, a number or any other character. For
example if Ò5te+Ó were input, then the output should be:

5 is a number

Chapter 11 : Handling Strings 207

t is a consonant
e is a vowel
+ is any other character

11.Modify Exercise 10 so that it outputs the vowels, consonants,
numbers, and other characters as words. For example if
Òasdfert456u2~1?Ó were input then the output would be:

numbers - 45621
vowels - aeu
consonants - sdfrt
any other character - ~?

12. Use your ingenuity to come up with a different way of finding
out whether or not a word is a palindrome.

13.Write a program that inputs a word, a letter, and a
replacement letter. If the first letter exists in the word, all
occurrences of it should be replaced by the replacement letter
and the new ÒwordÓ printed . If the letter does not exist in the
word, the message Òno replacement neededÓ should be
printed. For example:

Enter a word: program
Enter a letter: r
Enter replacement letter: l
New “word” is plogram.

14.Repeat Exercise 8 but use patterns of more than 1 letter
(replace a pattern of letters in a word with another pattern of
letters).

208 Introduction to Programming in Turing

11.9 Technical Terms
length of string
catenation
substring
range of substring
index function
searching for pattern
substitution of one string

by another

deletion of characters
insertion of characters
repeat function
ord function
chr function
palindrome

Chapter 11 : Handling Strings 209

211

Chapter 12

Processing Text

12.1 Token-oriented Input

12.2 Inputting a Fixed Number of Characters

12.3 Line-oriented Input

12.4 Files on Disk

12.5 Reading one File and Writing Another

12.6 Text Formatting

12.7 Simple Language Translation

12.8 Exercises

12.9 Technical Terms

212 Introduction to Programming in Turing

12.1 Token-oriented Input
We have already seen how to read and output strings of

characters. The string of characters was read as a single input
item free of blanks or enclosed quotes. In other words it was read
as a token which is a string of characters surrounded by white
space. This chapter explains other ways of reading characters,
including a specified number of characters or a whole line of
characters.

The normal input of strings in Turing is by tokens. Here is a
program, just for review, which reads a series of words in a line
ending with stop and outputs one word at a time.

% The "EchoWords" program
% Read a series of words, end with stop
var word : string
put "Enter a line of text, end with stop"
loop

get word
exit when word = "stop"
put word

end loop

Here is a sample Execution window.

Enter a line of text, end with stop
Please don't stop
Please
don't

The word Please is the first token read; since it is not stop it is
then output. On the next round of the loop the word don’t is read
and again output. When the token stop is read the exit condition
is satisfied and you leave the loop and the program is finished.

Chapter 12 : Processing Text 213

No matter how many words you have after the word stop, and
before you press Return, the result would be the same. For
example, if you enter

Please don't stop doing what you're doing

the output is identical.
You can make a token out of a string of characters with a

blank in it by surrounding the string with double quotes. Here is
an example program.

% The "Quotes" program
% Read a string in quotes
var name : string
put "Enter a string in quotes"
get name
put name

Here is a sample window.

Enter a string in quotes
"Alan Turing"
Alan Turing

The quotes are not part of the token and are not stored in the
variable name.

12.2 Inputting a Fixed Number of
Characters

If you arrange input in specific places along a line you can
read a certain number of characters rather than a token. It is
important to note that the full number of characters will always be
read. If there are not enough characters on the line of input, then
the remaining characters will be read from the next line of input.
Tabs can also be a problem because they appear as multiple
spaces but are only read as a single character.

214 Introduction to Programming in Turing

Here is a program that reads names and phone numbers.

% The "EchoData" program
% Read and output names and phone numbers
var name : string (20)
var phone : string (8)
put "Name" : 20, "Phone" : 8
loop

get skip
exit when eof
get name : 20, phone : 8
put name : 20, phone : 8

end loop

Here is a possible Execution window with the output shown in
a fixed- spacing characters.

Name Phone
Chin Yat Tat Aaron 973-2761
Chin Yat Tat Aaron 973-2761
Maltby Charles Ward 875-8637
Maltby Charles Ward 875-8637
(end of file here)

We placed the headings Name and Phone as a prompt over the
columns where the entries are to begin; this saves you counting
characters as you type in the data.

In this example, as we have in several previous examples, we
are using a special key (or keys) that you can press Control+Z or
Control+D to indicate that you are finished with a series of
entries. The Turing predefined function eof responds to this. Until
you press Control+Z or Control+D, eof has a value false. When
you press Control+Z or Control+D and all previous characters
have been read, eof becomes true.

The eof function is called a Boolean function: it has values
false or true just as a condition has. It is used in this program in
an exit when statement. When you are using the end-of-file to
indicate the end of a stream of tokens or a stream of numbers
you should precede the test with a get skip statement. This is

Chapter 12 : Processing Text 215

necessary to skip past white space, including the end-of-line
character or blanks, that may precede the end-of-file marker.

12.3 Line-oriented Input
To read a whole line of text at a time we use an asterisk (*)

instead of a precise number of characters to be read. Here is an
example.

% The "ReadWholeLines" program
% Read and output a line at a time
put "Enter a series of lines of text, end with eof"
var line : string
loop

exit when eof
% Read a whole line
get line : *
put line

end loop

Here is a sample window.

Enter a series of lines of text, end with eof
How now brown cow
How now brown cow
Out of the house
Out of the house
(end-of-file here)

When the program reads a line at a time you do not need get
skip before the eof test. This is because the asterisk method of
reading automatically skips over the end-of-line character that
appears at the end of each line. If you have a get instruction that
reads numbers, tokens, or a fixed number of characters that is
followed by get that reads a line you must have a get skip
between them. This makes sure that you are positioned at the
start of a line for the line-reading get.

216 Introduction to Programming in Turing

12.4 Files on Disk
You can see from the last two programs that it is sometimes

confusing to have the input and the output of text material on the
same window. We can arrange to read input from a file on disk or
to write output to a file on disk. We saw how to do this by
redirecting the input from the disk rather than having it come from
the keyboard, or by redirecting the output to the disk rather than
having it go to the window. This is done by Turing Environment
commands.

You can arrange for the program itself to explicitly use files.
This allows us to have several input or output files at a time. Each
input or output file must be given a stream number as well as a
name which we assign to it. This stream number is placed after a
colon following a get or put keyword. Before a file is referred to in
a program it must be opened using the open statement which
assigns a stream number to the file. If the open statement is not
successful a non-positive stream number ( 0) is assigned. We
can detect this by an assert statement.

Here is a program that reads a file which is another program
and outputs the program with the lines numbered.

% The "ListEchoFile" program
% Reads lines of text from file "echo" and numbers them
var streamNumber : int
% Open the file "Echo" for reading using "get"
open : streamNumber, "Echo", get
% Test that the open procedure has been successful
assert streamNumber > 0
var lineNumber := 0
var line : string
loop

exit when eof (streamNumber)
get : streamNumber, line : *
lineNumber := lineNumber + 1
put lineNumber : 3, " ", line

end loop

Chapter 12 : Processing Text 217

The sixth line of the program uses the open statement to
establish that the file called Echo will be given a stream number;
the ÒgetÓ which is the last entry of the statement means that you
will be using the get statement to read from the file. If you wanted
to output to the file using put, you would have used the word
ÒputÓ here. When you are done with the file, you should close it
with the statement

close : streamNumber

You can reopen it for other purposes later. The Turing
statement close requires only one item after the colon, namely
the stream number of the file to be closed. All files are closed
automatically at the end of the execution of a program so it is not
essential to close a file unless you plan to reopen it for a different
purpose.

We will be looking first at sequential files; each thing you get
(or output) from (or to) the file is the item following the previous
item. Items are read or written in sequence starting from the first
of the file.

In the loop of the ListEchoFile program the exit occurs when
the end of file of stream streamNumber occurs. That is why
streamNumber appears in parentheses after eof. Every file that
you create and place on the disk, either using the editing system
of the Turing Environment or by writing it in a program,
automatically has an end-of-file marker placed after the last
character of the file. In the get statement the stream number of
the file is placed after a colon and followed by a comma. The
single input item here is given as line :* which means as before
that you want to input all the characters up to the end of the line
(to the Return). These will be stored in the variable line.

After a line is read, the value of lineNumber is increased by 1
and then it and the line are output by the put statement. If you do
not know the name of the file that you want to output with line
numbers, or you do not want to call your file Echo, you can write:

% The "ListAnyFile" program
% Reads a file and outputs its lines numbered

218 Introduction to Programming in Turing

var fileName : string
var streamNumber : int
put "Enter name of file: " ..
get fileName
open : streamNumber, fileName, get
 (the rest as before)

12.5 Reading one File and Writing Another
This program reads words from a file called Script and outputs

all the four-letter words from Script onto a file called Censor. It
then reads and displays in the window what is in the Censor file.

% The "Purge" program
% Find and output all four-letter words in script
% Assumes no punctuation marks in text
% Assign a stream number to the input file Script
var script : int
open : script, "Script", get
assert script > 0
% Assign a stream number to the output file Censor
var censor : int
open : censor, "Censor", put
assert censor > 0
var word : string
loop

get : script, skip
exit when eof (script)
get : script, word
if length (word) = 4 then

put : censor, word
end if

end loop
% Close censor file and open for reading
close : censor
open : censor, "Censor", get
assert censor > 0
% Read and output censor file to the window

Chapter 12 : Processing Text 219

loop
get : censor, skip
exit when eof (censor)
get : censor, word
put word

end loop

Notice that we had to close the Censor file after writing it then
open it for reading. Again, when you are reading a token-at-a-
time rather than a line-at-a-time from a file you must execute a
get skip before a test for end-of-file in case there is blank space
or a Return just before the end of the file. Here we used the same
names for the stream numbers as for the files. This perhaps
makes it easier to read but is not necessary.

Here is an example where the punctuation marks are removed
from a text. It reads a file named Text and writes a file named
Expurge.

% The "RemovePunctuation" program
% Eliminates punctuation marks from text
% Assumes no double quotes or parentheses
var text : int
open : text, "Text", get
assert text > 0
var expurge : int
open : expurge, "Expurge", put
assert expurge > 0
var line, output : string
loop

exit when eof (text)
get : text, line : *
output := ""
for place : 1 .. length (line)

if index (",.:;'?!", line (place)) = 0 then
output := output + line (place)

end if
end for
put : expurge, output

end loop

220 Introduction to Programming in Turing

The reason that the double quote sign was not included as
one of the punctuation marks to be eliminated is that putting it
inside double quotes in the index function is not the same as most
other characters. It looks like the end of the quoted string if a
double quote is included. We have used single quotes inside
double quotes to avoid the problem. You can use a double quote
inside provided you precede it by a backslash (\). For example,
index (",.:;'\"?!", word). To include a backslash itself as a character
you must precede it by another backslash (\\).

12.6 Text Formatting
You can use computers to rearrange the number of

characters on a line in text. Here is an example that allows you to
specify the maximum length of each line and then read text and
output lines that are as long as possible within this limit.

% The "LeftJustify" program
% Reads file text and left-justifies it
var text : int
open : text, "Text", get
put "Enter length of output lines: " ..
var maxLength : int
get maxLength
var word : string
var lineLength : int := 0
loop

get : text, skip
exit when eof (text)
get : text, word
if lineLength + length (word) < maxLength then

put " ", word ..
lineLength := lineLength + length (word) + 1

else
put "" % Start new line
put word ..

Chapter 12 : Processing Text 221

lineLength := length (word)
end if

end loop
put "" % End last line

This is a very simple text formatting program. Many programs
arrange to make the characters at the ends of lines line up on the
left and on the right. Ours only left justifies the line. When you
right justify a line as well, extra spaces must be placed between
words to make it come out. This can look peculiar. Often words
are hyphenated to improve appearances. The hyphenation
program is also rather tricky.

12.7 Simple Language Translation
Computers can be used to translate from one language to

another. A Turing compiler translates programs written in the
Turing language to the language of the particular computer that it
is running on. Here is a simple translation program that changes
English into Pig Latin. The translation rules are very simple: each
word that begins with a vowel has ay added to the end of it; each
word that begins with a consonant has the consonant moved to
the end of the word and then has ay added.

Here is the program.

% The "PigLatin" program
% Reads a text and translates to Pig Latin
% Assumes no capital letters and no punctuation
var fileName : string
put "Enter name of file where English is stored"
get fileName
var inFile : int
open : inFile, fileName, get
assert inFile > 0
put "Enter name of file where Pig Latin is to be stored"
get fileName

222 Introduction to Programming in Turing

var outFile : int
open : outFile, fileName, put
assert outFile > 0
var word : string
loop

get : inFile, skip
exit when eof (inFile)
get : inFile, word
if index ("aeiou", word (1)) = 0 then

put : outFile, word (2 .. *) + word (1) + "ay "
else

put : outFile, word + "way "
end if

end loop

12.8 Exercises
1. Write a Turing program to read a series of lines and count the

number of words read before the word ÒstopÓ is reached.
What does the output look like if you try to output a word at a
time like the EchoWords program of this chapter? Use input
redirection to take the input from a file called Text instead of
from the keyboard.

2. Write a program that takes a text file stored on disk under the
file name NewText and outputs the text with exactly 7 words
on each line.

3. Using the same input text file (NewText) as the previous
question, write a program that outputs words on a line until the
next word would make the line longer than 60 characters then
starts a new line. Use the LeftJustify program as a basis but
arrange that the output lines are right justified rather than left
justified.

4. Write a program that computes the average length of words in
a text. Assume that there are no punctuation marks in the text.

5. Use the RemovePunctuation program of this chapter to
remove punctuation marks from a text. Be sure the

Chapter 12 : Processing Text 223

RemovePunctuation program is stored on your disk as you
may need it. Try to depunctuate the RemovePunctuation
program itself.

6. Write a program to read one line of text at a time from a file on
disk and output the line if it contains the word ÒvarÓ. In this
way you can spot all the declarations in a program. Use it to
find the declarations in the RemovePunctuation program.
Write the program in such a way that you ask the user what
word they want to search for. The lines containing the pattern
should have a line number so they can be easily found in the
original text.

7. Write a program to change any ÒorÓ endings of words to
ÒourÓ. For example it should change ÒcolorÓ to ÒcolourÓ.
Improve it so that it does not affect the word ÒorÓ itself.

8. Write a program to change all capital letters in a word to little
letters. To do this we use the two predefined Turing functions
ord and chr. These allow us to convert between the characters
and their ASCII code values. A to Z have values 65 - 90,
whereas a to z have values 97 - 122. To change letter from a
capital to little use these statements:

% Test if letter is a capital letter
if "A" <= letter and letter <= "Z" then

% Change to corresponding little letter
letter := chr (ord (letter) + (ord ("a") – ord ("A")))

end if

9. Write a program to read the words in NewText and output the
words ending with a vowel to a file called NewTextVowels.
The program should then display the contents of
NewTextVowels in the Execution window with double quotes
(Ò Ó) around each word.

10.Write a program that reads text from a file specified by the
user and outputs every other line of text, starting with the
second line, to another file specified by the user.

11. A UFO was found circling our area and upon investigation it
was found that the aliens on board were sending coded
messages to their superiors on planet L-E-N. The top

224 Introduction to Programming in Turing

investigating team found that they were using the following
method.
a) If the character was a digit greater than 0, then output the

letter in our alphabet that falls in that order number. For
example Ò3Ó gives ÒcÓ, Ò5Ó gives ÒeÓ.

b) If the character was a letter, then it output the next letter in
the alphabet. If the character was a ÒzÓ or ÒZÓ, then
ÒaÓ or ÒAÓ was output.
c) Characters other than digits or letters were left as is.

Create a program that replicates this alien code. Use any text
file you have and use it as input for the program. Output the
coded information to a file called ÒAliensÓ.

12. Write a program to run an analysis of vowel usage in any file.
Open any text file and analyze the data using the following
criteria. Count the number of times each vowel is used in the
file. Upper and lower case letters must both be counted. At
the end of analysis, output the number of a’s, e’s, i’s, o’s and
u’s. Also output the percentage of usage based on the
number of vowels and of letters in general. Lastly, give the
percentage of consonants used. Look at the example for
clarification.

It is the time for all good children to go to school and learn
Turing.

a’s = 2 10% of vowels 3.6% of all letters used
e’s = 4 20% of vowels 7.3% of all letters used
i’s = 5 25% of vowels 9.1% of all letters used
o’s = 8 40% of vowels 14.5% of all letters used
u’s = 1 5% of vowels 1.8% of all letters used
Percentage of consonants used 63.7% of all letters used

13. Modify the program in Exercise 12 to ask the user for any
character and the name of a file. It should analyze the file to
find the number of occurrences of that character in the file as
well as the percentage use for this letter in the total text.

Chapter 12 : Processing Text 225

12.9 Technical Terms
token-oriented input
line-oriented input
text processing
text formatting
right justified
left justified
stream number of file

open statement
close statement
sequential file
echoing input data
backslash
language translation

227

Chapter 13

Program Structure

13.1 Structure Diagrams

13.2 Nested Structures

13.3 Structure Diagram for elsif

13.4 Declaration of Variables and Constants Inside
Constructs

13.5 Design of Programs

13.6 Exercises

13.7 Technical Terms

228 Introduction to Programming in Turing

13.1 Structure Diagrams
All programs are made up of three basic constructs: the

sequential execution construct, the repetition construct, and the
selection construct. We can represent these three by structure
diagrams.

Sequence Repetition Selection

Figure 13.1 Structure Diagrams

As you can see the arrows on the lines joining the boxes give
the sequence of execution. In the sequential execution diagram
we show three boxes with an arrowed line coming into the first
box, one between each of the next boxes, and one leaving the
third box. We could think of another box, the one shown by the
dotted outline, as containing the whole structure. There is one
entrance to the structure and one exit. This is true of the other
two constructs as well. This is the great secret of structured
programming. Any one of the rectangular boxes in a structure
diagram could have appeared inside another structure. They all fit
inside each other.

Chapter 13 : Program Structure 229

In the diagrams for repetition and selection there is another
kind of box beside the rectangular box. It has a diamond shape
and from the diamond-shaped boxes there are two exits as well
as one entrance. No nesting is possible for these boxes. You
cannot put one inside the other.

13.2 Nested Structures
Here is a structure diagram for a nested structure of one

repetition inside another or as we sometimes say one loop nested
inside another.

Figure 13.2 Structure Diagram for Nested Loops

You can see that structure diagrams can look quite
complicated. It is easy enough to see the structure here because
we have used a smaller scale for the inner loop. Usually diagrams
like this are drawn so that all boxes are much the same size then
the same diagram would look like Figure 13.3.

It is not so easy to see that it is a loop within a loop. Notice
that in the diagram no arrowed lines ever cross each other. This
is true of most diagrams for programs made of the three basic
constructs.

230 Introduction to Programming in Turing

Before about 1972 programmers were not aware of the
enormous value of structured programming. In fact the languages
available then like Fortran and Basic did not have the selection
construct as part of the language. As well, they permitted exiting
from loops to points other than the next statement after the loop.

Figure 13.3 Structure Diagram with all Boxes Same Size

In those days people thought that structure diagrams were
essential to understanding the operation of a program. And they
may have been right because you could create very messy
programs. Certainly the arrowed lines crossed over each other
frequently in their diagrams. They were called flow diagrams or
flow charts. The tangle of lines in these early diagrams led later
enlightened programmers to call the early programs Òspaghetti
programsÓ. Most programmers now do not draw structure
diagrams because the structure is very evident from the program
itself if you always indent the body of loops and other nested
parts of the program.

13.2.1 A Loop Nested Inside a Loop

Here is a program with one loop nested inside another. It
outputs a repeated triangular pattern.

% The "Border" program

Chapter 13 : Program Structure 231

% Outputs 5 triangles
% Each triangle has 6 lines
const row := "******"
for triangle : 1 .. 5

for line : 1 .. 6
put row (1 .. line)

end for
end for

Notice that the body of the outer counted loop, the one with
the index triangle, is indented four spaces. The body of the inner
loop, the one with the index line is indented four more spaces.
You can see right away which end for goes with which for. The
output for this program is

*
**

*
**

etc.

Each line of the pattern is simply a substring of the string
constant row.

13.2.3 More Complicated Nesting of Structures

Here is a program that alternatively outputs a triangle with its
wide part at the top then with its wide part at the bottom.

% The "FancyBorder" program
% Outputs alternating triangles
const row := "******"
for triangle : 1 .. 5

if triangle mod 2 = 0 then
for line : 1 .. 6

232 Introduction to Programming in Turing

put row (1 .. line)
end for

else
for line : 1 .. 6

put row (line .. *)
end for

end if
end for

You can see the structure clearly from the program. Nested
inside the outer for loop is an if..then..else construct. Inside the
then clause of the selection construct is a for loop which outputs
the same triangle as in the Border program. Inside the else
clause is nested a for loop which outputs a triangle like this

**
*

The type of triangle output depends on the value of triangle
mod 2. The operator mod gives us the remainder when one
integer is divided by another. This will be zero for even values of
triangle so the first triangle output will be the new type, the
second the old type, and so on. Try drawing the structure diagram
for this program. Does it help you to understand the structure?

13.3 Structure Diagram for elsif
The elsif is a relatively recent programming language feature.

Before it was introduced you had to use nested if..then..else
constructs.

Here is a program written as if elsif did not exist.

% The "RateMarks" program

Chapter 13 : Program Structure 233

% Reads in a series of marks, ending with -1
% Outputs comments about performance
var mark : int
put "Enter -1 to signal end of series of marks"
loop

put "Enter mark: " ..
get mark
exit when mark = – 1
if mark >= 80 then

put "Excellent"
else

if mark >= 70 then
put "Good"

else
if mark >= 50 then

put "Satisfactory"
else

put "Poor"
end if

end if
end if

end loop

Notice that we have nesting of one if..then..else inside another
which in turn is nested in a third. There are three end ifs. The
then and else clauses of the inner if..then..else are indented
four levels of indentation, once for the loop and three for the
selection. You can draw the structure diagram for this if you like.

Here is the same program with elsifs.

% The "RateMarks2" program
% Read in a series of marks, ending with -1
% Output comments about performance
var mark : int
put "Enter -1 to signal end of series of marks"
loop

put "Enter mark: " ..
get mark
exit when mark = – 1
if mark >= 80 then

234 Introduction to Programming in Turing

put "Excellent"
elsif mark >= 70 then

put "Good"
elsif mark >= 50 then

put "Satisfactory"
else

put "Poor"
end if

end loop

Here there are only two levels of indentation necessary
instead of four and only one end if. Here is a structure diagram
for the elsif structure.

 Figure 13.4 Structure of elsif

This is sometimes called a cascaded if statement.

Chapter 13 : Program Structure 235

13.4 Declaration of Variables and Constants
Inside Constructs

We have so far declared our variables and constants outside
of either repetition or selection constructs. They can then be used
anywhere in a program. We have learned that the index of a
counted loop is not known outside the scope of the loop.

We can arrange to have variables or constants known only
within the scope of these constructs. All we need to do is declare
them inside the construct. This is not something we do frequently
but it is useful when we want to prevent access to the variable
outside the construct.

If a variable or constant is declared inside a loop, then it is
known until the end of the loop. If they are declared in the then
clause of an if..then..else the scope is the then clause. Similarly
for the else clause. Here is a program segment which swaps the
numbers stored in variables number1 and number2 if the value
stored in number1 is larger than that in number2:

if number1 > number2 then
const temp := number1
number1 := number2
number2 := temp

end if

Here the constant temp is declared in the then clause as
having the value stored in number1. This permits the swap to
take place. The value of the constant temp is not known outside
the then clause. We could have declared it as a variable instead
of a constant but since it does not change in this scope it is better
to call it a constant.

Here is a program that calculates a user-specified Fibonacci
number. Fibonacci numbers are a sequence of numbers where
each number is the sum of the previous two elements in the
sequence. The first two elements are set as 1 and 1. The third is
2 (1 + 1), the fourth 3 (1 + 2), the fifth 5 (2 + 3) and so on.

236 Introduction to Programming in Turing

The declaration of the elements used to calculate the
Fibonacci number is in the else clause and the declaration of the
temporary variable used in the calculation is in the loop itself.

It is important to remember that one purpose of placing
declarations inside a construct is to make the program easier to
read and follow. Thus it is important to make it easy to find the
declarations of variables that occur in the program. In practice,
this means either placing the declarations near the top of the
program or placing them within a page of the variable’s use in the
program.

% The "Fibonacci" program
% This outputs a fibonacci number
var number : int

put "Enter the element in the Fibonacci sequence to calculate: " ..
get number

if number <= 0 then
put "The number should be positive"

else
var element1 : int := 1
var element2 : int := 1
for i : 3 .. number

var temp := element1 + element2
element1 := element2
element2 := temp

end for
put "Element number ", number, " is ", element2

end if

13.5 Design of Programs
So far the programs that we have written have been short.

When we try to create larger programs it is best to develop the
design of the program in stages. First of all you must decide what
the program is to accomplish. You must work out detailed

Chapter 13 : Program Structure 237

specifications for the form the input data is to take and the form
in which you want the output data. You will be solving the
problem of transforming the input data into the output data.

The details of how this is to be done, what we call the
algorithm for performing the transformation, will be worked out
step-by-step. The result will be a Turing program by which the
computer can accomplish what you want done.

The original specification of the problem will be in English.
The solution will be in Turing. As you move to refine the process
step by step, what you are creating is gradually transformed from
the English language statement of what is to be done to the
Turing language statement of how to do it.

At each stage our emerging design will be changing from
English to Turing and at any intermediate stage can be a mixture,
some things in English some in Turing. This is called step-by-
step refinement or the top-down approach to program
development.

In the gradual transformation it is common to leave the
English parts in the final Turing program as comments. This lets
you see the logic of the program development process.

13.5.1 Controlling Complexity

We learn how to do simple things well then try to reduce
complicated things to a collection of simple things. In this way we
find we can cope with very large programs without getting lost in a
maze of detail. As well as using the top-down approach to the
design of larger programs we do something else to keep
programs small. We break them up into subprograms. Each
subprogram is then a manageable smaller program.

This is sometimes referred to as modular programming
since the final program consists of a number of components or
modules connected together to make a unit. In Turing the word
module is used in a special technical sense which must be
understood if you want to write really large programs that will
work and give correct results. Subprograms will be discussed
later.

238 Introduction to Programming in Turing

13.6 Exercises
1. Write a program to produce a repeated border running down

the page. The pattern should be like this:

 *
 *

*
*

 *

and so on.
2. Write a program that produces a customized pattern. There

are to be three basic components which can be selected by
the user. As each component is output the computer asks
which component is to be next. In order to keep the output
pattern separate from the prompt and input information,
output the pattern to a disk file called Pattern.

3. Try to create a program to output a repeated pattern across
the page rather than down the page.

4. Write a program to draw a rectangular box outlined by
asterisks where the number of asterisks across and the
number down is input to the program. For example, a sample
Execution window might be

How many asterisks across? 5
How many asterisks down? 6
Here is the pattern

* *
* *
* *
* *

Chapter 13 : Program Structure 239

5. Write a program to produce a zigzag pattern like this

*
 *
 *
 *
 *
 *
*
 *
 *
 *

and so on where the lengths of the zig and the zag are input.
Keep the zig bigger than the zag or the pattern will move off
the page too quickly.

6. How do you decide whether to use an elsif construct or a
case construct when a selection is to be made among more
than 2 alternatives?

7. Write a program to exchange the values of the variables v1,
v2, and v3 so that v2 holds the original value of v1, v3 holds
the original value of v2, and v1 holds the original value of v3.
Do this with 10 sets of numbers and for each set, the numbers
should be entered by the user and new values for the
variables should be printed after the exchange.

13.7 Technical Terms
structure of program
structure diagram
nesting of constructs
structured programming
flow diagram or flow chart
mod operator

declarations within
construct

scope of constant or
variable

swapping values
design of program
problem solving
algorithm

240 Introduction to Programming in Turing

step-by-step refinement
top-down approach
transformation of data

controlling complexity
subprogram
modular programming

241

Chapter 14

Arrays and
Other Data Types

14.1 Array Data Types

14.2 Manipulating Lists

14.3 When to Use an Array

14.4 Initialization of Arrays

14.5 Sorting an Array

14.6 Related Lists

14.7 Subrange Data Types

14.8 Boolean Data Types

14.9 Tables

14.10 Named Data Types

14.11 Exercises

14.12 Technical Terms

242 Introduction to Programming in Turing

14.1 Array Data Types
So far we have seen three types of data for single variables:

real and int for numbers and string for strings of characters. In
Turing there are a number of other data types. One of these
types called the array type allows you to group single variables
into a data structure. Often you are dealing with a lot of similar
items of information, like the names of your friends. Usually you
keep this sort of information in a list somewhere. To store such a
list in the computer you could use a series of variables named
friend1, friend2, friend3, and so on. In this case the ideal data
type is not a series of single variables but one variable of array
data type. For example, if you declare a variable friend as an
array type by the declaration

var friend: array 1..100 of string

you would have established memory locations for 100 friend’s
names. The different individual locations are referred to as friend
(1), friend (2), friend (3), and so on. This makes the declaration
simpler than writing

var friend1, friend2, ..., friend100 : string

It also makes it easier to manipulate the list in the computer.
Arrays can be of any data type. Here is the declaration for an

array of ten integers.

var number : array 1 .. 10 of int

Here is the declaration for an array of ten real numbers.

var decimal : array 1 .. 10 of real

The upper and lower bounds of an array can be integers. The
upper bound can also be an integer variable so that the size of
the array can be changed at run time.

Here is a program that declares an array with a user-specified
size.

var size : int

Chapter 14 : Arrays and Other Data Types 243

put "Enter the array size : " ..
get size
var numbers : array 1 .. size of int

14.2 Manipulating Lists
Here is a program that reads a list of names and outputs the

list in reverse order.

% The "ReverseNames" program
% Reads a list of names and outputs in reverse
var howMany : int
put "How many names are there? " ..
get howMany
var name : array 1 .. howMany of string (20)
put "Enter ", howMany, " names, one to a line"
for i : 1 .. howMany

get name (i) : *
end for
put "Here are the names in reverse order"
for decreasing i : howMany .. 1

put name (i)
end for

Notice that the variable name is an array of strings of
maximum length 20. This saves space since the default length of
strings is 256. The number of elements in the array is not known
until the program executes. At that time you tell it how many there
are. This is known as dynamic declaration of an array.

Here is an Execution window.

How many names are there?
4
Enter 4 names, one to a line
Mark Mendell
Steve Perelgut
Chris Stephenson

244 Introduction to Programming in Turing

Inge Weber
Here are the names in reverse order
Inge Weber
Chris Stephenson
Steve Perelgut
Mark Mendell

When the names are read into the array the get statement
reads a line at a time. This is what the :* is for. The array element
name (1) will have Mark Mendell as a value, name (2) will have
Steve Perelgut, and so on. The second for loop is one where the
index decreases by one for each iteration so the names are
output in reverse order. It is important to note that the range of an
array does not have to start with 1. For example, the range could
be

var name : array 3 .. 10 of string

or
var name : array –2 .. 12 of string

14.3 When to Use an Array
Arrays are more complicated than single variables and, since

our goal in programming is to keep things as simple as possible,
we should not use an array unless we need to. In the first
example we needed to read in an entire list of names before we
could start to output the names in reverse order.

The next program uses an array but the array is not
necessary. The program finds the average mark for a class in a
computer science exam.

% The "ArrayAverage" program
% Reads a list of marks and computes their average
var count : int
put "How many students in class? " ..
get count
var mark : array 1 .. count of int
var sum := 0

Chapter 14 : Arrays and Other Data Types 245

put "Enter the marks for the students"
for i : 1 .. count

get mark (i)
end for
for i : 1 .. count

sum := sum + mark (i)
end for
const average := sum / count
put "Average mark is ", average : 6 : 2

In this example the two for loops can clearly be combined into
one

for i : 1 .. count
get mark (i)
sum := sum + mark (i)

end for

Since the mark is added into the sum as soon as it is read there
is absolutely no need to store it in an array. The program without
an array would have the declaration

var mark : int

and the single for loop would be

for i : 1 .. count
get mark
sum := sum + mark

end for

Always be on the alert for cases when a data item can be
processed as soon as it is read and need not be stored in the
memory. In cases like that, an array is unnecessary. One of the
most common uses of arrays is for data that is to be available in
the memory so that any piece of it can be retrieved on request.

To make retrieval easy it is sometimes appropriate to sort the
data into a systematic order, for example, into alphabetic order
for a list of names. Arrays are frequently used to hold a list that is
to be sorted.

246 Introduction to Programming in Turing

14.4 Initialization of Arrays
Just as variables can be initialized to a value in their

declaration so also can arrays. The declaration

var list : array 1 .. 5 of int := init (2, 7, 8, 6, 5)

will initialize the array values so that list (1) is 2, list (2) is 7, list (3)
is 8, and so on.

Here are two more examples of array initialization.

var names : array 1 .. 5 of string := init ("Fred","Barney",
"Wilma", "Betty", "Dino")

var decimal : array 1 .. 4 of real := init (0, 0, 0, 0)

If the array is large and the initial value of each element is the
same then a for loop can be used to initialize the array.

var names: array 1.. 100 of string
var numbers : array 1 .. 100 of int
var decimals : array 1 .. 100 of real
for i : 1..100

names (i) := ""
numbers (i) := 0
decimals (i) := 0

end for

14.5 Sorting an Array
There are many ways to sort a list. Some ways are much

more efficient than others. Also some ways use very little space
other than the space the original array takes.

Here is a program for sorting an array of integers less than
999 into ascending order. It uses a second array to do this and it
is not an efficient method.

% The "SortArray" program

Chapter 14 : Arrays and Other Data Types 247

% Reads a list of positive integers and
% sorts it into ascending order
var count : int
put "How many integers in list? " ..
get count
var list : array 1 .. count of int
% Read list into array
put "Enter the numbers in the list"
for i : 1 .. count

get list (i)
end for
% Declare second array for sorted list
var sortList : array 1 .. count of int
for i : 1 .. count

% Find smallest remaining in list
var smallest := 999
var where : int
for j : 1 .. count

if list (j) < smallest then
smallest := list (j)
where := j

end if
end for
% Store smallest in sortList array
sortList (i) := smallest
% Replace smallest in array list by 999
list (where) := 999

end for
% Output sorted list
put "Here are the numbers in ascending order"
for i : 1 .. count

put sortList (i)
end for

Notice that when the smallest is selected from the array list, it
is replaced by a large integer, namely 999. This means it will
never be selected as smallest again. When you have finished
sorting, all the elements of the array list will be 999. The elements
of the array sortList will be the integers in ascending order. This
method of sorting is called sorting by selection.

248 Introduction to Programming in Turing

14.6 Related Lists
Sometimes associated with one list there is another list. For

example, a list of friends could have a list of phone numbers
related to it. The first name in the one list would correspond to the
first telephone number in the other list, and so on. In this case we
would use two separate arrays to store the information.

Here is a program to look up a telephone number of a friend.
The phone directory is two arrays: a series of names and their
corresponding numbers. It is stored in a disk file called Direct.

% The "PhoneDirectory" program
% Reads a phone directory
% then looks up numbers in it
const maxEntries := 50
var name : array 1 .. maxEntries of string (20)
var phoneNumber : array 1 .. maxEntries of string (8)
var count : int := 0
% Assign a stream number to directory
var directory : int
open : directory, "Direct", get
assert directory > 0
loop

get : directory, skip
exit when eof (directory)
count := count + 1
assert count <= maxEntries
get : directory, name (count) : 20,

phoneNumber (count) : 8
% All names will be of length 20

end loop
close : directory
put "There are ", count, " entries in directory"
var friend : string
loop

put "Enter friend's name: " ..
exit when eof
get friend : *

Chapter 14 : Arrays and Other Data Types 249

if length (friend) < 20 then
% Pad with blanks to make string friend
% of length 20 because strings must have
% same length to be equal
friend := friend + repeat (" ", 20 – length (friend))

end if
var place : int := 0
% Search list for name
for i : 1 .. count

if name (i) = friend then
place := i
exit

end if
end for
if place not= 0 then

put "Phone number is ", phoneNumber (place)
else

put "Not in list"
end if

end loop

In this example the names and phone numbers in the
directory are formatted with 20 character positions for the name
and 8 for the phone number. The get : directory, skip statement
is needed to skip the end-of-line character between pairs of
entries. As the entries of the directory are read into the two arrays
name and phoneNumber, they are counted. The number of
names is stored in the variable count. The arrays have been
declared as having maxEntries entries so count must not be
bigger than maxEntries. Notice that we are reading 20 characters
for each name in the directory so that, if we expect the friend’s
name to match one of these, it must be padded with blanks to
make a total of 20 characters.

250 Introduction to Programming in Turing

14.7 Subrange Data Types
There is another way in Turing besides using an assert

statement to make sure in the PhoneDirectory program that count
has values only between 0 and maxEntries inclusive. This way is
to declare count as a subrange type by this declaration

var count : 0 .. maxEntries := 0

The value of count is automatically restricted to the subrange
and is also initialized to zero as before. If in the execution of the
program an attempt is made to go beyond maxEntries an
execution error is reported and the program stops. Subrange
types can be used as ranges in a for loop or in an array
declaration.

14.8 Boolean Data Types
The lookup process can perhaps be made clearer using a

variable found which is a Boolean variable. Boolean variables
can have only two values: true and false. You can assign either
of these values to such a variable but you cannot input or output
the value of a Boolean variable. They can be used anywhere a
condition can be used: in an if statement or an exit when
statement.

Here are some declarations and statements using Boolean
variables.

var stat : boolean
stat := true
stat := not stat % makes stat false
stat := not stat % makes stat true

Here are two examples of a Boolean variable being used in place
of a true/false condition.

Chapter 14 : Arrays and Other Data Types 251

exit when stat
exit when stat = true % These two statements are
equivalent.

exit when not stat
exit when stat = false % These two statements are equivalent.

Here is an example program using a Boolean variable. This
program reads a list of names and eliminates all duplicate names.
As each new name is read into the array nameList it is compared
with all those already read in and if it is not found in the list it is
added. The list without duplicates is then output. Here is the
program.

% The "RemoveDuplicates" program
% Reads a series of names and eliminates duplicates
var nameCount : int
put "Enter number of names " ..
get nameCount
put "Enter a series of ", nameCount, " names"
var nameList : array 1 .. nameCount of string (30)
var arrayCount := 1
for i : 1 .. nameCount

get nameList (arrayCount) : *
var found : boolean := false
for j : 1 .. arrayCount – 1

if nameList (arrayCount) = nameList (j) then
found := true
exit

end if
end for
if not found then

arrayCount := arrayCount + 1
end if

end for
% Output list without duplicates
put "Here are the names without duplicates"
for i : 1 .. arrayCount – 1

put nameList (i)
end for

252 Introduction to Programming in Turing

14.9 Tables
When all the entries in a number of related lists are of the

same data type you can use a single two-dimensional array or
table to store the information. Suppose for a particular city you
have a list of the airfares (super economy of course) to a number
of other cities. You have such lists for every city that the airline
flies to. Each entry in all the lists is a number of dollars. There will
be as many lists as there are entries in each list. Usually we
arrange lists like this as a table with rows and columns.

Here is such a table shown in fixed-spacing characters.

To Chicago(1) New York(2) Boston(3) Toronto(4)
From

Chicago(1) 0 110 120 80
New York(2) 110 0 50 100
Boston(3) 120 50 0 90
Toronto(4) 80 100 90 0

Usually the order of the headings on the columns is the same
as the order of the headings on the rows. Chicago is the heading
of the first row and the first column. The entries on the diagonal
are all zero; it does not cost anything to fly to your own city. This
table is symmetric about the diagonal of zeros. We can declare
such a two-dimensional array by this declaration.

var airfare : array 1 .. 4, 1 .. 4 of int

The first range 1 .. 4 refers to the number of rows, the second 1 ..
4 to the number of columns. To refer to the array element that is
from Boston to New York we use

airfare (3, 2)

It is the element in the table in the 3rd row and 2nd column.
To initialize this two-dimensional array so all elements arte

zero, you use nested for loops.

Chapter 14 : Arrays and Other Data Types 253

for row : 1 .. 4
for column : 1 .. 4

airfare (row, column) := 0
end for

end for

Here is a program that would read in a table of airfares and
store it in a file on disk called Fare. You enter the table a row at a
time.

% The "FareTable" program
% Reads and stores an airfare table
put "Enter number of cities in table: " ..
var cityCount : int
get cityCount
var airfare : array 1 .. cityCount, 1 .. cityCount of int
% Read table into two-dimensional array
for i : 1 .. cityCount

put "Enter next row of table"
for j : 1 .. cityCount

get airfare (i, j)
end for

end for
% Output two-dimensional array to disk
% Assign a stream number to fare
var fare : int
open : fare, "Fare", put
put : fare, cityCount
for i : 1 .. cityCount

for j : 1 .. cityCount
put : fare, airfare (i, j) : 8 ..

end for
put : fare, ""

end for

You can also create three or even four dimensional arrays.
This is done by adding more ranges in the declaration. Here is
the declaration for a three dimensional array.

var statistics : array 1 .. 10, 1 .. 5, 1 .. 8 of real

254 Introduction to Programming in Turing

14.10 Named Data Types
Sometimes a particular complex data type such as an array

type or a subrange type occurs several times in the same
program. It is possible to give the type a name and then just refer
to this named type each time you use it. To declare a named
type you use the form:

type name : description

In our Fares program we could have declared a named subrange
type called airports by this declaration

type airports : 1 .. cityCount

if cityCount was a constant, rather than a variable. cityCount must
be a constant because both bounds of a subrange must be
known at compile time (in other words, before the program starts
execution). Each time this subrange is used it can be referred to
by the name airports. For example, the declaration for airfare
could now be

var airfare : array airports, airports of int

Even the for loops could use the named subrange type to
declare the range of indexes. For example,

for i : airports

Here is a program that uses a named range called monthType
as both an index to an array and the range of a for loop.

% The "CalculateDaysInYear" program
% Calculate the number of days in a non-leap year
type monthType : 1 .. 12
var days : array monthType of int := init (31, 28, 31, 30, 31, 30, 31,
31,

30, 31, 30, 31)
var totalDays : int := 0

for month : monthType

Chapter 14 : Arrays and Other Data Types 255

totalDays := totalDays + days (month)
end for
put "There are ", totalDays, " days in a year"

Named types are used to greater effect when we have
subprograms.

14.11 Exercises
1. Write a program to read in a list of names, sort the list, and

then output the list in sorted order. This program could be
divided into three steps as illustrated by the comments

% Read list of names
...

% Sort list of names
...

% Output sorted list of names

We will not worry about whether or not the sorting algorithm
we use is an efficient algorithm. Perhaps you can have two
arrays: one for the unsorted list and a second for the sorted
list. Look for the alphabetically least in the unsorted list and
put it in the first place in the sorted list. Then look for the next.
If you blot out the first one you choose with some string like
‘ZZZZ’ it will never get chosen again. Do this until you have
placed the whole list in order.

2. Write a program to read in a series of heights of people and
output all those that are above average in height for the
group.

3. The median value in a list of values is the value which has as
many entries in the list with smaller values as it does with
larger values. Write a program to determine the median value
of a list of integers.

256 Introduction to Programming in Turing

4. An inventory of the articles you have in a drawer is stored on a
disk file under the file name Drawer. Write a program to read
the file into memory then, when asked, to tell you whether or
not there is a certain item in the drawer. A sample Execution
window might look like this.

What are you looking for?
pen
There is a pen in the drawer
What are you looking for?
dime
There is no dime in the drawer
... and so on ...

5. Test the subrange feature of Turing by declaring that an
integer must be between 1 and 10 then trying to read an
integer outside this range.

6. Adapt the RemoveDuplicates program in this chapter to read
a file from disk called Family which contains the first names of
your relatives. (Be sure there are some duplicates.) The
program is then to store the list, with duplicates eliminated, in
a file called Names.

7. Use the program Fares in this chapter to store an airfare table
for five cities in a file called Fare. Now write a program of your
own to read the table into memory and use it to answer
customers’ questions about airfares. A sample Execution
window might be for the four-city table in the chapter.

Where are you flying from?
Chicago
Where are you flying to?
New York
The fare is $110

8. Create a data file called Marks which has 10 records in it.
Each record consists of a name of a student, and four integer
values which are the marks of the student. The first mark is
out of 25, the second is out of 10, the third is out of 50 and the
fourth is out of 20. Write a program that reads the file into 5
related arrays:

Chapter 14 : Arrays and Other Data Types 257

var names : array 1..10 of string
var mark1, mark2, mark3, mark4 : array 1..10 of int

Declare three more arrays.

var evenlyWeighted, weighted, assigned : array 1..10 of real

These three will contain the evenly-weighted, weighted, and
assigned averages for each of the students. To get the evenly
weighted average, convert each mark to a percent and then
take an average of the percents. If the marks are 10/25, 8/10,
30/50 and 14/20 then the percents are 40, 80, 60, and 70
respectively. The evenly-weighted average would be 62.5%,
so the corresponding array element would be assigned 62.5.
To get the weighted average, take the sum of the marks and
the sum of the total test marks available and express this as a
percent. For the above example the calculation would be

100 * (10+8+30+14)/(25+10+50+20) or 59.0%.

The weighted average would be 59.0%, so 59.0 is assigned to
the corresponding array element. Assign the better of the two
above averages to the assigned array. Now display all the
arrays in chart form in the window.

9. Modify the program in Exercise 8 so that the records are
displayed in descending order according to the assigned
average. Make sure that swapping the assigned average has
not mixed up your data. All fields must be swapped to ensure
that the integrity of your records has not been compromised.

10. Write a program that asks the user how many numbers they
want generated. Randomly create and display these numbers.
At the end of the run display the mean, median, and the
mode. The mean is the average (sum of all numbers/number
of numbers). The median is the center value of a sorted list (if
there are an even number of numbers then the median is the
average of the two middle numbers, if there are an odd
number of numbers, the median is a single value). The mode
is the number or numbers which occur the most often. In the
list below 3 and 4 are the modes as they both occur 4 times.

1 2 2 3 3 3 3 4 4 4 4 5 6 7 8 9 9 9

258 Introduction to Programming in Turing

11. Write a program to output the song ÒOld MacDonald Had a
FarmÓ with 10 verses. Use two arrays, one for the animals
and one for the sounds they make and initialize them both.
Use a getch between each verse to clear the window. If the
first three animals were cow, ass, and pig and the first three
sounds were moo, heehaw, and oink then this is how the first
three verses should appear. Take note of the ÒaÓ or ÒanÓ in
front of the animal or its sound.

(verse 1)

Old MacDonald had a farm, e-i-e-i-o
And on that farm he had a cow, e-i-e-i-o
With a moo-moo here and a moo-moo there
Here a moo, there a moo, everywhere a moo-moo
Old MacDonald had a farm, e-i-e-i-o

 (getch and verse 2)

Old MacDonald had a farm, e-i-e-i-o
And on that farm he had an ass, e-i-e-i-o
With a hee-haw here and a hee-haw there
Here a hee, there a hee, everywhere a hee-haw
With a moo-moo here and a moo-moo there
Here a moo, there a moo, everywhere a moo-moo
Old MacDonald had a farm, e-i-e-i-o

 (getch and verse 3)

Old MacDonald had a farm, e-i-e-i-o
And on that farm he had a pig, e-i-e-i-o
With an oink-oink here and an oink-oink there
Here an oink, there an oink, everywhere an oink-oink
With a hee-haw here and a hee-haw there
Here a hee, there a hee, everywhere a hee-haw
With a moo-moo here and a moo-moo there
Here a moo, there a moo, everywhere a moo-moo
Old MacDonald had a farm, e-i-e-i-o

12. Ask the user for a series of words or tokens and have a
sentinel to mark the end of the session. For each word output
only the letters that appear only once in the word. Treat upper
and lower case letters as equivalent.

Chapter 14 : Arrays and Other Data Types 259

sample input sample output
apple ale
Rory oy
AaBbc c
NNN none is unique

13. Initialize an array with 26 single character elements to be the
26 letters of the alphabet. Randomly generate integers from 1
to 26 to indicate which of the letters you will be using. For
example if 2 is generated you would use the letter b. Use this
method to make a series of four-letter words. Ask the user
how many words they want created and then output them in
the window.

14. Modify the program in Exercise 13 to keep a count of which
letters are chosen. Do this with one extra array. Output the
number of times each letter has been chosen to create the
words in the program.

15.Write a program to simulate the throw of a die 50 times and
output the number of times each number was thrown. (Use
the randint procedure .)

16.Repeat Exercise 4 but this time, the file should be named
Drawer2 and contain the quantity of each item. A sample
Execution window might look like this:

What are you looking for?
pen
There are 4 pens in the drawer.

Modify the program to ouput

There is one pen in the drawer.

for the case of a value 1.
17.Write a program to input 10 integers and once all 10 integers

are input, output a message indicating whether or not each of
the 10 integers was even or odd.

260 Introduction to Programming in Turing

14.12 Technical Terms
array data type
element of array
index of array
list
init
initialization of array
retrieval of data
sorting of array

sorting by selection
lookup in list or table
subrange data type
boolean data type
table
two-dimensional array
named data type
type declaration

Chapter 14 : Arrays and Other Data Types 261

263

Chapter 15

Music

15.1 Playing Musical Notes

15.2 Playing a Series of Notes

15.3 Using the Keyboard to Make Music

15.4 Animation with Music

15.5 Exercises

15.6 Technical Terms

264 Introduction to Programming in Turing

15.1 Playing Musical Notes
Turing programs can be written to output music. The music

can be played without anything in the Execution window or it can
accompany a graphic display.

Musical notes can be played one-at-a-time or as a series of
notes. To play a single note we use the predefined procedure play
in the form

play (value-of-note)

where the value of note is its duration followed by its pitch. The
pitch of a note is given by the letters A to G inclusive which
represent the corresponding musical notes. (Little letters a to g
can be used equally well.) If the letter is followed by a plus sign,
the note is sharp; if by a minus sign, the note is flat. For example,
we can play the note D and then an F sharp this way:

play ("D")
play ("F+")

These notes are played as quarter notes. The duration of a
note is given by a single digit according to this table:

1 whole note
2 half note
4 quarter note
8 eighth note
6 sixteenth note

So this plays C as an eighth note:

play ("8C")

All subsequent notes will be eighth notes unless explicitly set
to a different duration. The pitch is presumed to be in the middle
octave which starts at middle C. The middle octave notes are

Chapter 15 : Music 265

C D E F G A B

To represent C in the octave above the middle octave, we use
the notation >C; to represent it in the octave below the middle, we
use <C. Once either > or < have been used all future notes in that
play instruction, or in subsequent play instructions, are shifted to
the same octave. To prevent the notation for one note from
influencing the value of the next, we should make a practice of
returning to the middle octave after the note is played. For
example, to play an eighth note with pitch A in the octave above
the middle octave we would use

play ("8 > A<")

In these examples the value of a note has been a string of
characters which are enclosed in quotes. We could also write

var note : string := "8 >A<"
play (note)

Now the parameter of the play procedure is a string variable.
Here is a program which plays random sixteenth notes in the

C-scale in the middle octave.

% The "RandomNotes" program
% Plays sixteenth notes in C scale at random
const CScale := "CDEFGAB"
play ("6") % Set to play sixteenth notes
var note : int
loop

randint (note, 1, 7) % Pick a note at random
play (CScale (note))

end loop

Since all notes are to be with the same duration we can give a
play statement to set this for all following notes. Notice that the
parameter of play giving the value of the note is a one-character
substring of the string CScale.

266 Introduction to Programming in Turing

15.1.2 Resting for a While

Sometimes we want an interval of silence in our music. This is
called a rest or pause and is achieved by playing a ÒnoteÓ
whose ÒpitchÓ is P (or p). The duration of the rest is given in the
same way as the duration of a note. A half note rest is given as
Ò2pÓ.

15.2 Playing a Series of Notes
A series of notes is given by catenating the notations for

individual notes and placing the resulting string in a play
instruction. If the duration is the same from one note to the next it
need not be repeated. If the octave is the same you do not need
to return to the middle and then go back to the same octave. For
example, the instruction

play (">8A< >8B<")

which plays two notes, both eighth notes in the octave above the
middle octave could be written more simply as

play (">8AB<")

Notice that we make a practice of returning to the middle octave
even after a series of notes. Here are two instructions that play
ÒMary had a little lambÓ

play ("4EDCDEE2E4DD2D4EG2G")
play ("4EDCDEEEEDDED2C")

15.3 Using the Keyboard to Make Music
Here is a program that lets you play music using the keyboard

of the computer. It plays the notes of the C-scale when you press
the keys 1–8. When you press 1 you get middle C, when you

Chapter 15 : Music 267

press 2 you get D, and so on. When you press 8 you get C in the
octave above the middle octave. All the notes have the same
duration. Before you begin you will be asked to enter the digit that
corresponds to the duration you want.

% The "Piano" program
% Makes the computer keyboard into a musical keyboard
cls
var duration : string (1)
put "Enter one digit to control duration"
put "You can enter 1, 2, 4, 8, or 6: " ..
get duration
play (duration)
put "You can now begin to play"
put "Play notes by pressing keys 1 to 8, any other key to stop"
var note : string (1)
loop

getch (note) % Wait until a key is pressed
if note = "1" then

play ("C")
elsif note = "2" then

play ("D")
elsif note = "3" then

play ("E")
elsif note = "4" then

play ("F")
elsif note = "5" then

play ("G")
elsif note = "6" then

play ("A")
elsif note = "7" then

play ("B")
elsif note = "8" then

play (">C<")
else

exit
end if

end loop

268 Introduction to Programming in Turing

Try playing a simple folk tune on your keyboard. Record the
notes so you can use them to write a program to play the tune
automatically.

15.4 Animation with Music
In this section we will try a more difficult problem. We will

combine animated graphics with music. It is important that the
music and the graphics be in time with each other; they must be
synchronized. The particular problem we will attempt is a sing-
along animation which displays the words of a song, one-line-at-
a-time, and has a ball bounce from one syllable of the words to
the next, as the corresponding note to be sung is played. This
used to be a very common way of leading a sing song for a group
of people sitting in a theatre.

The problem will be simplified by treating all syllables as
strings of length 7 characters (including any hyphen). This means
that the Òbouncing ballÓ can be placed above the first character
of the string. If the line consists of 5 syllables with 5
corresponding notes, then the ball will be in column 1 for the first
note, 8 for the next, 15 for the next, and so on, for 5 different
positions.

We will not try to animate the ball’s motion between these
positions in our simple program. It will just disappear from one
position and reappear at the next when the note is finished
playing. Here there is no need to have a delay in the animation;
that is accomplished by waiting for playdone to be true.

The predefined function playdone is a boolean function whose
value is true if the last note of the preceding play procedure is
finished. We will store the songs in a library of old favorites on the
disk.

These data files will have this form

number of lines
{number-of-syllables-in-line syllables-separated-by-blanks
 notes-separated-by-blanks }

Chapter 15 : Music 269

The individual line specifications are preceded by an integer
which tells how many lines there are. Each line is preceded by
the number of syllables in the line followed by those syllables,
separated by blanks, then the corresponding notes, separated by
blanks.

Here is what the data would look like for the first verse of the
song ÒMary had a Little LambÓ

5
7 Ma- ry had a lit- tle lamb 4E 4D 4C 4D 4E 4E 2E
3 Lit- tle lamb 4D 4D 2D
3 Lit- tle lamb 4E 4G 2G
7 Ma- ry had a lit- tle lamb 4E 4D 4C 4D 4E 4E 4E
6 Its fleece was white as snow 4E 4D 4D 4E 4D 2C

The description of the notes is given so that each note is
specified independently of the previous notes or the following
notes. This means that each will have a duration and a pitch. If
the note is not in the middle octave then the pitch is preceded by
the sign (or signs) necessary to shift octaves and followed by the
complementary sign (or signs) to return to the middle octave.

The maximum length of the string needed to specify a note is
seven characters, one for duration, one or two for pitch, two or
four for octave shift and return. If there is a pause, a syllable with
no characters (an empty string) is inserted in the line.

To do this you must use two double quotes with no characters
between. The corresponding note will be a p (for pause) prefaced
by a duration. Since the line of the song must fit onto the line in
the window we will allow for a maximum of 11 syllables which
would take up 77 character positions. Longer lines can be split
into two.

The syllables of the lines will be stored in a two-dimensional
array called lineSyll where each element is

lineSyll (line, syllNo)

The 3rd syllable of the 2nd line would be

lineSyll (2, 3)

270 Introduction to Programming in Turing

We will read in the whole song from the disk before playing it
so that any delays in getting it from the disk will not interrupt the
playing of the song. Because the input is from the disk there are
no prompts.

Here is a sketch of the program.

% The "singSong" program
% Plays songs for a sing-a-long
% Read song from disk
for line : 1 .. numLines

% Display words of line on window row 10
for syll : 1 .. numberOfSyll (line)

% Plot ball over syllable
% Play corresponding note
% When playdone = true erase ball

end for
% Erase words of line

end for

The number of syllables in the lines will be stored in a one-
dimensional array called numberOfSyll where the element
numberOfSyll (3) would be the number of syllables in the third
line.

Here is the complete program.

% The "SingASong" program
% Plays songs for a sing-a-long
% Read song from disk
var numLines : int
get numLines
var lineSyll : array 1 .. numLines, 1 .. 7 of string (7)
var lineNote : array 1 .. numLines, 1 .. 7 of string (7)
var numberOfSyll : array 1 .. numLines of int
for line : 1 .. numLines

% Read number of syllables in line
get numberOfSyll (line)
% Read syllables in line
for syllNo : 1 .. numberOfSyll (line)

Chapter 15 : Music 271

get lineSyll (line, syllNo)
end for
% Read notes in line
for noteNo : 1 .. numberOfSyll (line)

get lineNote (line, noteNo)
end for

end for

cls
for line : 1 .. numLines

% Display words of line on window row 10
locate (10, 1)
for syllNo : 1 .. numberOfSyll (line)

put lineSyll (line, syllNo) : 7 ..
end for
% Plot ball over syllable
for syllNo : 1 .. numberOfSyll (line)

% Display ball over syllable in window row 9
locate (9, 1 + (syllNo – 1) * 7)
put "*" ..
% Play corresponding note
play (lineNote (line, syllNo))
% When note is finished playing, erase ball
locate (9, 1 + (syllNo – 1) * 7)
put " " ..

end for
% Erase words of line
locate (10, 1)
put " "

end for

If the song is stored in the file called Mary the program could be
executed using the run command that redirects the input to be
from that file.

The combination of music and graphics can be used to
enhance many computer applications.

272 Introduction to Programming in Turing

15.5 Exercises
1. Write a program to read in a string of symbols that represent a

song you know and then play it repeatedly.
2. Arrange that there is a pause of 10 full notes duration

between repetitions of the song of question 1.
3. Arrange that you can interrupt the repetitions of the song of

question 1 between repetitions by typing the letter q for quit.
4. Write a program to play a song and display the words a line-

at-a-time (for a song of at least four lines). Do not display the
words of the next line until the notes of the previous line have
finished playing.

5. Prepare the data (notes and words) for a song to be in the
sing-a-long library for the program SingASong. Store it on the
disk. Now run the SingASong program using your song as
input data.

6. Modify the Piano program to use a case statement instead of
a cascaded if...then...elsif...else statement.

7. Write a program like the Piano program that lets you sound
any of the 12 notes on the piano (including the black keys) in
the middle octave at any duration that you want. This is not to
be a program for playing at a normal rate but rather one that
will provide you with a note to start a group singing without
accompaniment.

8. Modify the BrownianMotion program in the chapter graphics to
make a more interesting noise when the particle reaches the
edge of the window.

9. Write a program that sounds notes in the scale of three flats
at random. This scale is E-flat major. The E-flat scale can be
played with the instruction

play ("E–FGA–B–>CDE–<")

Chapter 15 : Music 273

10.Write a program that plays Beethoven’s ÒOde to JoyÓ and at
the same time changes the color of the window every third
note. Here is a string that represents the ode:

8bb>cddc<baggabb6p
a4a8bb>cddc<baggaba6p
g4g8aabga6b>c<8bga6b>c
<8baga4d
8bb>cddc<baggaba6pg4g

Store the song on the disk in the one-note-at-a-time form.
Read it into an array before you play it.

11. Modify the program of question 10 to change window color
randomly so that the number of notes (or pauses) between
color changes varies between 2 and 6.

12. Improve the SingASong program by inserting another position
of the bouncing ball between syllables. Put this on row 8, half
way between syllable positions.

13.Write a program to play the C major scale in 8th notes in 4
octaves ascending and descending.

15.6 Technical Terms
octave
pitch
duration
scale
play

rest
pause
flat
sharp
playdone

274 Introduction to Programming in Turing

275

Chapter 16

Subprograms

16.1 Functions

16.2 A Procedure with No Parameters

16.3 A Procedure with One Parameter

16.4 Variable Parameters in Procedures

16.5 Predefined Procedures and Functions

16.6 Recursive Subprograms

16.7 Functions versus Procedures

16.8 Exercises

16.9 Technical Terms

276 Introduction to Programming in Turing

16.1 Functions
So far all the programs shown in the book have been

reasonably small. When you try to write a longer program there
are more opportunities to get confused and to have programs that
are not easy to understand. So we try always to keep our
programs small by subdividing larger programs into a number of
subprograms.

In Turing there are two kinds of subprograms: functions and
procedures. A function is a subprogram that produces a single
value, like the square root of a number or an amount of money to
the nearest cent. A procedure can do much more such as read in
an array or plot a graph.

16.1.1 Predefined Functions

We have already used functions in many of our programs, not
functions that we programmed ourselves, but functions that are
part of the Turing system. These have been predefined and their
definitions stored in the computer. Some of these functions
require real parameters and produce real values.

For example, the function for square root would have a
definition that would begin with a header line such as

function sqrt (r: real): real

This function returns the positive square root of r, where r is a
non-negative value. If we wrote a program such as

put sqrt (36)

the output would be 6. Integer values are acceptable as actual
parameters where the formal parameter r is real. The value of the
square root is computed as a real value but, because in this case
it is an integer, it is output as such by the put statement. This is
the same as when we write

Chapter 16 : Subprograms 277

put 100 / 4

The result of the division is real but it is output as 25.
Whenever you call a function, you must use the result. In

other words, the line

sqrt (36)

is illegal, just as having the line

5 + 10

is illegal. You must use the value of the function in some way.
The value can be as part of an expression, assigned to a
variable, or output as the result of the function call.

When you are passing a parameter to a function or a
procedure, you must be able to assign the parameter’s data type
to the formal parameter’s data type. For example, you could not
pass a string to the sqrt function because you cannot assign a
string to a real. You can, however, pass an integer to the sqrt
function because you can assign an int to a real.

In the appendix of this book there is a list of all the predefined
functions in Turing. A number of these are mathematical
functions which are very useful for scientific calculations. These
are sin, cos, arctan, ln, exp, and so on.

Other functions are used to convert a parameter of one data
type into a value of another data type. They are called type
transfer functions. For example,

put round (5 / 3)

will produce the result 2. A real value, the result of division, is
converted to an integer. We can use one function in another
function’s definition provided that the first function is either
predefined or its definition precedes the second function’s
definition in the program.

278 Introduction to Programming in Turing

16.1.2 Type Transfer Functions

Type transfer functions are used to convert one data type to
another data type. For example, the round function is used to
convert a real number to an integer. Turing contains a complete
set of these functions.

Here are the type transfer functions covered earlier in the
book.

round round to nearest integer
ceil round up to nearest integer
floor round down to nearest integer
ord convert a single character to an integer
chr convert an integer to a single character
strint convert a string to an integer

Here are some other useful type transfer functions.

intstr convert an integer to a string
intreal convert an integer to a real
strreal convert a string to a real
realstr convert a real to a string

There are also two functions to help convert strings to integers
and reals. These are strintok and strrealok. Both of these functions
take a string and return true if the string can be converted to a
number.

Various functions allow you to change between integers and
strings. For example, chr (7) produces a one-character string,
namely the digit 7. In ASCII code chr (65) has a value A; chr (90)
is Z. The function intstr (i, w) yields the string of length w
corresponding to the integer i (right-justified). The function strint
(s) yields the integer equivalent of string s. These are all defined
in the appendix.

Here is a program that illustrates the use of type transfer
functions. The result of the put instructions are shown as
comments on the lines where they occur.

put round (1.55) % 2

Chapter 16 : Subprograms 279

put ceil (1.33) % 2
put floor (1.789) % 1
put ord ("A") % 65
put ord (65) % A
put strintok ("123") % true
put strintok ("12ab") % false
put strealok ("58.7") % true
put strealok ("?") % false
var word, neword: string
word := "34"
var num, newnum : int
num := strint (word)
put word + word % 3434
put num + num % 68
neword := intstr (num)
put neword + neword % 3434
word := "3.14"
put word + word % 3.143.14
var deci : real
deci := strrea l (word)
put deci + deci % 6.28
neword := realstr (deci, 5)
put neword + neword % ^3.14^3.14

16.1.3 User-created Functions

Here is an example of a function subprogram that we call
square that gives the square of a number.

function square (number : real): real
result number ** 2

end square

This is a very small subprogram. The first line of the function
definition is a header that indicates that it is a function and gives
its name. In parentheses after the name are listed the formal
parameters of the function with their data types. Parameters are
a way that a subprogram communicates with the main program.
Through the parameters, information flows into the function
subprogram from the main program. Here there is only one

280 Introduction to Programming in Turing

formal parameter number and it is of type real. After the
parentheses is a colon then the data type that the value of the
function will have. Here the square will be real.

The last line of a function definition must have the keyword
end followed by the function’s name. In between the header and
the end is the body of the function subprogram. Here the body is
only one statement and it gives the value of the function using the
keyword result in front of the value. This is such a small
subprogram that it is hardly worth bothering about but it shows all
the basic ideas.

Now we must use the function in a program to show how that
is done. This program outputs the squares of the numbers from 1
to 10.

% The "TableOfSquares" program
% Outputs a table of squares

function square (number : real) : real
result number ** 2

end square

for i : 1 .. 10
put i : 2, square (i) : 4

end for

Here is the Execution window shown in fixed-spacing
characters.

 1 1
 2 4
 3 9
 4 16
 5 25
 6 36
 7 49
 8 64
 9 81
10 100

Chapter 16 : Subprograms 281

To use the function you just give its name followed in
parentheses by the actual parameter whose square is wanted.
Here the parameter is the loop index i. The value of the actual
parameter i is used as the value for the formal parameter number
in the function definition. The function definition is included in the
main program anywhere as long as the definition appears before
any use is made of it. We will put blank lines around a
subprogram definition to make the program easy to read. You
can see at a glance where each piece begins and ends.

Here is a program using another function called roundCent.

% The "ComputeInterest" program
% Computes bank interest to nearest cent

function roundCent (amount : real) : real
% Round amount to nearest cent
result round (amount * 100) / 100

end roundCent

var balance, interestRate : real
put "Enter balance: " ..
get balance
put "Enter current interest rate in percent: " ..
get interestRate
const interest := roundCent (balance * interestRate / 100)
balance := balance + interest
put "New balance = ", balance
put "Interest = ", interest

Here is a sample Execution window.

Enter balance 576.37
Enter current interest rate 7.8
New balance = 621.33
Interest = 44.96

Here is another version of the interest program using a second
function calcInterest. The calcInterest function uses the
roundCent function. This is possible because roundCent is
declared before calcInterest.

282 Introduction to Programming in Turing

% The "ComputeInterest2" program
% Computes bank interest to nearest cent

function roundCent (amount : real) : real
% Round amount to nearest cent
result round (amount * 100) / 100

end roundCent

function calcInterest (amount, interestRate : real) : real
result roundCent (amount * interestRate / 100)

end calcInterest

var balance, interestRate : real
put "Enter balance: " ..
get balance
put "Enter current interest rate in percent: " ..
get interestRate
const interest := calcInterest (balance, interestRate)
balance := balance + interest
put "New balance = ", balance
put "Interest = ", interest

16.1.4 A String-valued Function

In this section we will look at the definition of a function that
has exactly the same purpose as the predefined function repeat in
order to let you see how the repeat function might be defined. In
the appendix the repeat function’s description is:

repeat (s: string, i: int): string
If i > 0, returns i copies of s
joined together, else returns the empty string.
Note that if j > 0, length (repeat (t, j)) = j * length (t).

Here is the definition of a function called copy that does the
same thing as repeat.

function copy (s : string, i : int): string
var copies : string := ""

Chapter 16 : Subprograms 283

if i > 0 then
for j : 1 .. i

copies := copies + s
end for

end if
result copies

end copy

The variable copies is local to the function definition and is used
to build the string that is returned as the result. If this definition is
included in the program the result of the statement

put copy ("HiHo ", 3)

will be

HiHo HiHo HiHo

the same as you would get for this statement

put repeat ("HiHo ", 3)

16.2 A Procedure with No Parameters
Functions return a value and use their parameters to compute

their result. Procedures can return many values and usually have
one or more parameters which are used in computing the values
returned. There are other possibilities. For example, a procedure
can cause output and may not have any parameters at all.

Here is a procedure which will output a triangle shape.

procedure triangle
% Outputs a triangle of asterisks
for i : 1 .. 5

put repeat ("*", i)
end for

end triangle

Notice that the header of the procedure begins with the keyword
procedure followed by the name triangle that we are giving to the

284 Introduction to Programming in Turing

procedure. There is no data type of a procedure as there is to a
function. At the end of the definition is the keyword end followed
by the name of the procedure. Between the header and the end,
with the name triangle after it, is the body of the procedure which
consists here of a comment explaining what the procedure does
and a for loop. We will leave blank lines around a procedure
definition as we did for a function definition to make our program
more readable.

Here is a program that uses this procedure.

% The "Jagged" program
% Outputs a number of triangles

procedure triangle
% Outputs a triangle of asterisks
for i : 1 .. 5

put repeat ("*", i)
end for

end triangle

var howMany : int
put "How many triangles do you want? " ..
get howMany
for i : 1 .. howMany

triangle
end for

Notice that the definition of the procedure triangle is included
in the program. It can be placed, as a unit, anywhere in the
program as long as it precedes its use by the program. This
means the definition must come before the statement triangle
that causes it to be used.

The call to a procedure is a statement. It is not part of an
assignment or an output statement. The call appears by itself on
a line.

Here is a sample Execution window.

How many triangles do you want? 3
*
**

Chapter 16 : Subprograms 285

*
**

*
**

Here we have made a procedure triangle and used it in the
main program. In the triangle program we use the loop index i
and the call to triangle in the main program is nested inside a
loop using the index i. If we tried to write a single program
containing such a sequence namely:

for i: 1 .. howMany
for i: 1 .. 5

put repeat("*", i)
end for

end for

we would be given a syntax error message and would have to
change the first i to some other name such as j to get the
program to work. When the inner for loop is embedded in the
triangle procedure there is no problem. The index i of the
procedure is a local variable in the procedure and is not known
outside at all. Thus there is no problem having the loop contain
the statement triangle controlled by an index called i.

This is an important point about procedures and functions:
name coincidence between a variable local to the procedure or
function and other variables in the main program, or in other
subprograms, causes no conflict. The main program, however,
does not have any access to local variables in a subprogram.

286 Introduction to Programming in Turing

16.3 A Procedure with One Parameter
Here is a procedure that is similar to the procedure triangle

but which requires one piece of information to be fed into it from
the main program, namely how big the triangle to be output is.
We will call this procedure triangles to indicate that various sizes
are possible.

Here is its definition.

procedure triangles (size : int)
% Outputs a triangle of size asterisks
for i : 1 .. size

put repeat ("*", i)
end for

end triangles

In the header of the procedure definition the parameter size and
its data type int are given in parentheses after the name of the
procedure.

Here is a program that uses the triangles procedure.

% The "RandomTriangles" program
% Outputs 5 triangles of random size between 3 and 6

(copy triangles procedure here)

var howBig : int
for i : 1 .. 5

randint (howBig, 3, 6)
triangles (howBig)

end for

In this example the actual parameter for triangles is howBig. This
is in correspondence with the formal parameter size. Both are of
type int.

This program uses the predefined procedure randint. Here is
the signature for randint.

Chapter 16 : Subprograms 287

randint (var i : int, low, high : int)

The randint procedure sets i to the next value of a sequence of
pseudo random integers that approximate a uniform distribution
over the range low ² i and i ² high. It is required that low ² high.

When randint is called in the program RandomTriangles it is
called by

randint (howBig, 3, 6)

The actual parameter 3 corresponds to the formal parameter
low; the actual parameter 6 corresponds to the formal parameter
high. This means that, when randint executes, the actual
parameter howBig, which corresponds to the formal parameter i,
is set to the next value in a sequence of pseudo-random integers
from the range 3 to 6 inclusive. The variable howBig has been
altered by the action of the procedure; we say it is a variable
parameter. In the definition of a procedure any parameter whose
value is altered by that procedure must be indicated by having the
keyword var placed in front of its type definition. Notice the var in
front of the i in the definition for randint.

We use the term pseudo-random because the results from
randint are not truly random. Because the computer is not
capable of basing its results on any truly random events, it
simulates random numbers by generating a sequence of
numbers according to a mathematical formula. The results of this
formula appear to be random and are suitable for use in
programs.

Note that because the first parameter in randint is a variable
parameter (we also say that the parameter is passed by
reference), you must pass a variable as the first parameter. The
statement

randint (4, 3, 6)

is illegal because it attempts to pass an integer as the first
variable.

Variables that are not passed by reference are passed by
value. This means that the value of the parameter is assigned to

288 Introduction to Programming in Turing

the parameter in the subprogram. This also means that you
cannot change the value of the parameter in the subprogram.
The subprogram

procedure badSwap (x, y : int)
var temp : int := x
x := y
y := temp

end badSwap

generates compilation errors on the lines assigning values to x
and y.

16.4 Variable Parameters in Procedures
Here is another example of a procedure with a variable

parameter. This procedure will use the balance in a bank account
and the interest rate and return the new balance and the interest
paid. Compare this with the ComputeInterest program at the
beginning of the chapter.

% The "ComputeSavings" program
% Computes bank interest to nearest cent
var balance, interestRate, interest : real

function roundCent (amount : real) : real
% Round amount to nearest cent
result round (amount * 100) / 100

end roundCent

procedure banker (var balance, interest : real, interestRate : real)
interest := roundCent (balance * interestRate / 100)
balance := balance + interest

end banker

put "Enter balance " ..
get balance
put "Enter current interest rate " ..

Chapter 16 : Subprograms 289

get interestRate
banker (balance, interest, interestRate)
put "New balance = ", balance
put "Interest = ", interest

The parameters of the procedure banker that are variable
parameters are balance and interest because banker changes
these values. Their names are preceded by the keyword var. The
procedure banker does not change the value of interestRate so it
is not declared as a variable parameter.

Here the names of the actual parameters and the formal
parameters are identical. This is perfectly all right; the names that
are in correspondence may be different but do not have to be.

As it happens if we are using identical names we can omit all
references to the parameters in the definition of the procedure
and the call to it. This is possible because any subprogram has
access to the variables declared in the main program. We say
these variables are global. They are known both in the main
program and in any subprogram defined in the program after they
have been declared. We could then write our program with the
procedure header.

procedure banker

and the call to it simply as

banker

Note that in the procedure banker, the variables balance,
interest, and interestRate refer to the local variables declared in
the procedure rather than the global variables declared at the
beginning of the program.

16.4.1 Procedures to Bullet-proof Input

We have already shown a bullet-proof program segment that
gets an integer value from the user. You can make this segment
even more useful by making it a procedure so that it can be
called from any place in a program.

290 Introduction to Programming in Turing

Here is the getInt procedure.

procedure getInt (var number : int)
var input : string
loop

get input
exit when strintok (input)
put "Not a number. Please enter an integer: " ..

end loop
number := strint (input)

end getInt

Here is an example program that uses the getInt procedure to
compare two ages.

% The "GetTwoAges" program.

(copy getInt function here)

var age1, age2 : int
put "Enter the age of the first person: " ..
getInt (age1)
put "Enter the age of the second person: " ..
getInt (age2)
if age1 > age2 then

put "The first person is older."
else

put "The second person is older."
end if

16.5 Predefined Procedures and Functions
As we have already said certain functions and procedures in

Turing are predefined and can be used without actually including
them in your own program. For example, the predefined functions
length, index or repeat for strings or sqrt, abs and min for numbers.
There are, as you know, Turing procedures for producing random
numbers. The predefined procedure randint whose header line is

Chapter 16 : Subprograms 291

randint (var i : int, low, high : int)

sets the variable i to a pseudo random integer from a uniform
distribution between low and high inclusive.

Here is another example using randint. In it we simulate the
throw of a die (one of two dice) using

randint (throw, 1, 6)

This will produce an integer value for throw between 1 and 6
inclusive. Here is a program to produce a series of throws for two
dice.

% The "RollDice" program
% Simulate a sequence of dice throws
var die1, die2 : int
loop

put "Do you want to roll (y or n)? " ..
var reply : string (1)
get reply
if reply = "y" then

randint (die1, 1, 6)
randint (die2, 1, 6)
put "You rolled ", die1 + die2

elsif reply = "n" then
exit

else
put "Reply y or n"

end if
end loop

In this program randint is used. Other predefined procedures
for random numbers are

rand (var r : real)

which sets r to a pseudo random real number from a uniform
distribution in the range between 0 and 1 (not inclusive).

If you have a subprogram of your own that you want to use in
a program, store it in a file under its name then in the location

292 Introduction to Programming in Turing

where its declaration should be in the main program place the
line

include "filename"

This will cause the subprogram to be included at this point of the
main program. You can also copy subprograms from a separate
file into a program using the cut and paste commands of the
Turing editor.

16.6 Recursive Subprograms
In Turing it is permitted to have a subprogram call itself. We

say then that the subprogram is recursive. Here is a function that
produces the value of factorial n. The definition of factorial n is
the product of all the integers from 1 to n inclusive. A recursive
definition of factorial n that is equivalent to the other definition is

factorial (n) = n * factorial (n –1)

and that factorial (1) = 1. This means that you can work out the
factorial of the next higher integer if you know the factorial of the
previous integer.

Here is the recursive function.

function factorial (n: int): int
pre n > 0
if n > 1 then

result n * factorial (n 1)
else

result 1
end if

end factorial
Seems like magic but it works. The function factorial keeps calling
itself for the factorial of a smaller value as long as n is greater
than 1.

In the line after the function header line there is a pre
condition. This is like the assert statement used in programs but
is used in subprograms to state conditions that must be true upon

Chapter 16 : Subprograms 293

entry into the subprogram. If the condition is not true, execution
will be stopped. You can also have a post condition which states
a condition that must be true as you exit from a subprogram.

16.7 Functions versus Procedures
When creating a subprogram to perform a task, it is important

to decide whether the subprogram should be a procedure or a
function. There are a few guidelines that are used to determine
which type of subprogram should be used, depending on the
characteristics of the subprogram.

If the subprogram calculates a single value, then the
subprogram should be made a function and the calculated value
should be returned as the value of the function. If the subprogram
can change multiple values, then the subprogram should be a
procedure and the values to be changed passed as var
parameters to the procedure. If the subprogram does not change
any values, then it should also be made a procedure. If a
subprogram changes global variables, then the subprogram
should also be a procedure.

Here are some sample subprograms, along with the reasoning
for making them a funtion or a procedure.

A subprogram that calculates the interest given an initial
balance and an interest rate – function. There is only one value
calculated and no changes are made to global variables.

A subprogram that draws a flag – procedure. There is no
returned value and no parameters are changed.

A subprogram that determines if an answer to a multiple
choice question was legal – function. There is a single returned
value (true or false). The return value depends on whether the
user’s input was from a single letter from a to e.

A subprogram that returns the coordinates of a mouse click –
procedure. The mouse click coordinates consist of two values,
the x- and y-coordinates. The subprogram has two var
parameters to return the two values.

294 Introduction to Programming in Turing

A subprogram that calculates the mean of an array of
numbers – function. The subprogram has an array as a
parameter and returns the mean as a single value.

16.8 Exercises
1. Write and test a function subprogram called circleArea whose

value is to be the area of a circle whose radius is given as the
parameter of the function. Compare the results with those of
the ManyCircleAreas program in Chapter 6.

2. Write and test a function subprogram called interest whose
value is the yearly interest to the nearest cent on a bank
balance. The amount of the balance and the yearly interest
rate as a percentage are to be parameters of the function.

3. Write and test a procedure subprogram called swap for
swapping the values between two string variables given as
parameters of the procedure.

4. Write and test a procedure subprogram called rotate which
will rotate the integer values of three parameters. If the
parameters A, B, and C originally had values 1 2 3 before the
operation of the procedure, then afterwards the values would
be 3 1 2.

5. Write and test a procedure subprogram called inflate that,
given as parameters an amount of money and a constant
annual rate of inflation, will produce a list of the inflated values
of the original amount at the end of each year for 10 years.

6. Use the predefined procedure randint to produce a pattern of a
random number of asterisks between 1 and 5 along the page.
Have the total number of lines in the pattern as a parameter.
For example, the pattern might look like this

**
*

**

Chapter 16 : Subprograms 295

*

and so on
7. Experiment with the predefined functions floor, ceil, intreal,

intstr, and strint to try to understand their usefulness.
8. Write and test a subprogram called midLetter that returns the

middle letter of a word given as a parameter. If the word has
an even number of letters, the first letter in the second half of
the word is considered the middle letter.

9. Write and test a procedure subprogram called card that
randomly generates suit and value of a card (for example the
Jack of Hearts) and returns them through parameters.

10.Write and test a procedure subprogram that plays the music
to ÒHappy BirthdayÓ.

11.Write and test a recursive function that returns the values of
xn, where x and n are parameters and n is positive.

12. Write a procedure called blank that works like cls. Do not use
ÒclsÓ as a statement in the procedure.

13. Write a function called rounding which does what the
predefined function round does. Make sure that it takes a real
parameter and returns an integer.

14. Write a function called reverse which takes one value string
parameter and returns a string that is the reverse of the
parameter string. Incorporate this function in a main program
which tests to see if a word is a palindrome.

15. Write a function called toUpper which has one value
parameter of string type. It should return a string which has all
the letters in the parameter string converted to uppercase. For
example

put toUpper ("Fred")

should output FRED.
16. Write a function called absolute which takes one real

parameter and returns the absolute value of that real
parameter. Do not use the predefined function abs.

296 Introduction to Programming in Turing

17. Write a subprogram called butterfly which takes 6 value
parameters, all of integer type. The first four parameters
represent the bottom-left corner and top-right corner of the
box in which the butterfly is to be located. The last two
parameters are for the color of the wings, and the color of the
body respectively. No matter how small or large the box is, the
butterfly (large or small) should retain its shape.

18. Write a procedure called clean which takes one variable
parameter of string type. This procedure should take the string
and change it so that it contains only letters. For example,

var word := "9u%Tre?."
clean (word)
put word %---> should output "uTre"

19. Write a subprogram called filename which takes a value
string parameter which is the name of a file. The function
should return true if the file exists and false if it does not.

16.9 Technical Terms
subprogram
function
function definition
body of function
procedure
procedure definition
body of procedure
header
parameter
formal parameter
actual parameter
result statement
variable parameter
local variable

global variable
predefined function
predefined procedure
randint procedure
rand procedure

Chapter 16 : Subprograms 297

floor, ceil, intreal, strint,
intstr functions

include statement
recursive subprogram
pre condition
post condition

299

Chapter 17

Subprograms with
Array Parameters

17.1 Functions with Array Parameters

17.2 Array Parameters in Procedures

17.3 Dynamic Formal Parameters

17.4 Local and Global Variables and Constants

17.5 Maintaining a Sorted List

17.6 Exercises

17.7 Technical Terms

300 Introduction to Programming in Turing

17.1 Functions with Array Parameters
In this chapter we will look at subprograms that have

parameters that are of the array data type. Here is a function
which will have a value that is the largest element of an array of 5
integers.

function maxArray (list : array 1 .. 5 of int) : int
var biggest := list (1)
for i : 2 .. 5

if list (i) > biggest then
biggest := list (i)

end if
end for
result biggest

end maxArray

Here is a program that uses the maxArray function.

% The "FindBestMark" program
% Finds the highest mark in a class of five

 (copy maxArray function definition here)

put "Enter five marks"
var mark : array 1 .. 5 of int
for i : 1 .. 5

get mark (i)
end for
put "The best mark is ", maxArray (mark)

In choosing names for functions or procedures (or variables) we
must avoid using those of predefined functions or procedures
which, like keywords, are reserved in the Turing language. A list
of reserved words can be found in the appendix. Notice that max
and min are in this list.

Chapter 17 : Subprograms with Array Parameters 301

17.2 Array Parameters in Procedures
This procedure will sort a list of ten names of maximum length

30 characters into alphabetic order. The method of sorting is
called a bubble sort. The sorting is accomplished by comparing
the first two items in the list and interchanging their positions if
they are not in ascending order of size. This process is repeated
using the second and third items, then the third and fourth. When
you are finished the largest item will be in the last position in the
list. The whole process is then repeated on a list that excludes
the last item. In this way the complete list gradually gets sorted. In
carrying out the algorithm, if at any time there is no need to
exchange a pair of elements, the list must be sorted.

procedure bubble (var list : array 1 .. 10 of string (30))
% Sort list of 10 names into alphabetic order
for decreasing last : 10 .. 2

var sorted : boolean := true
% If there is any swapping, list is not sorted
% Swaps elements so largest in last
for i : 1 .. last – 1

if list (i) > list (i + 1) then
sorted := false
% swap elements in list
const temp := list (i)
list (i) := list (i + 1)
list (i + 1) := temp

end if
end for
exit when sorted

end for
end bubble

The parameter list will be altered by the procedure bubble so
it must be declared as a variable parameter. The variable sorted
is a variable that is local to the procedure bubble as of course are
the index variables last and i and the constant temp. Just as the
value of an index variable is not available outside the for loop

302 Introduction to Programming in Turing

that it controls, the value of sorted is not available outside the
procedure in which it is defined.

Here is a program that uses the procedure bubble. There are
as well, two other procedures, one for reading a list of 10 names
and one for outputting the list.

% The "SortNames" program
% Reads, sorts, and outputs a list of 10 names

procedure readList (var people : array 1 .. 10 of string (30))
% Read 10 names
put "Enter 10 names one to a line"
for i : 1 .. 10

get people (i)
end for

end readList

(copy bubble procedure here)

procedure writeList (name : array 1 .. 10 of string (30))
% Output 10 names
put "Here is sorted list"
for i : 1 .. 10

put name (i)
end for

end writeList

var friend : array 1 .. 10 of string (30)
readList (friend)
bubble (friend)
writeList (friend)

Notice that the formal parameter name in the writeList
procedure is not a variable parameter because it is not altered by
the procedure. The formal parameters for the list of names are:
list in bubble, people in readList, and name in writeList. These are
each in turn in correspondence with the actual parameter friend.

Chapter 17 : Subprograms with Array Parameters 303

17.3 Dynamic Formal Parameters
In the procedures bubble, readList, and writeList the

parameter involved is an array of ten strings of length 30
characters. This means that their use is restricted to this
particular length of array and length of string. We could have left
these two unspecified in the procedures and then the procedure
would work for any length of array or string.

For example, the procedure readList might be given as

procedure readList (var people: array 1 .. * of string (*))
% Read names
put "How many names are there? " ..
var number
get number
for i : 1 .. number

get people (i)
end for

end readList

Here in the header the upper limit of the array is given by an
asterisk as is the length of the string. We say that the array
parameter and the string parameter are dynamic; they can
change. The declaration of friend in the main program cannot be
given in this ÒdynamicÓ way. It must be declared with the actual
string length to be used and an array size large enough to hold
the longest array you want to read in.

The writeList procedure can similarly be written in this
manner.

procedure writeList (name: array 1 .. * of string (*))
% Output as many names as in array
put "Here is sorted list"
for i : 1 .. upper (name)

put name (i)
end for

304 Introduction to Programming in Turing

end writeList

Here the actual upper limit of the array that is in
correspondence with the formal parameter name is given when
you ask for the value of

upper (name)

The lower limit would also be available using

lower (name)

Note that you can only use the * to represent the array size
only when the array is being passed as a parameter. This is
because the array size has already been set.

17.3.1 Another Example of a Procedure

Here is a procedure that finds the minimum and the maximum
of a list of real values.

procedure minmax (list : array 1 .. * of ageRange,
var minimum, maximum : ageRange, number : int)

minimum := list (1)
maximum := list (1)
for i : 2 .. number

if list (i) > maximum then
maximum := list (i)

elsif list (i) < minimum then
minimum := list (i)

end if
end for

end minmax

To review: a procedure declaration begins with the keyword
procedure followed by the name you choose for it. In
parentheses are the names of the formal parameters with their
types. With functions information can only flow into the
subprogram through the parameters. It is through the value of the
function itself that information flows out. No other side effects
are permitted. With procedures information can flow both ways

Chapter 17 : Subprograms with Array Parameters 305

through the parameters and this means that for procedures there
is another kind of formal parameter. If the procedure changes the
value of any parameter, which means information is flowing out,
its name must be preceded by the keyword var. It is said to be a
variable parameter. The minmax procedure will change the
values of the parameters minimum and maximum so they must
be declared as variable. Since minmax will only be looking at list
and not changing any value, list is not preceded by the keyword
var. Thus list cannot be changed. There is no data type of the
procedure itself as there is with a function. The body of procedure
ends with the keyword end followed by the name of the
procedure.

The size of the array that will be examined to find the
maximum and minimum is passed as a parameter number. The
array list itself is declared as an array whose elements range from
1 .. *. The use of the asterisk means that the size of the array can
vary; it is a dynamic array size. When the procedure executes,
the value of number will be the actual length of the array that is in
correspondence with the formal array parameter list.

Now we must use this procedure in a main program. Here is
the program that computes the difference between the largest
and smallest elements of an array.

% The "AgeSpan" program
% Computes the difference between the largest
% and smallest element in an array of ages
type ageRange : 1 .. 120
put "Enter number of elements in array: " ..
var number : int
get number
var age : array 1 .. number of ageRange
% Read in array with number elements
put "Enter ", number, " ages"
for i : 1 .. number

get age (i)
end for

(copy procedure minmax here changing real parameters to the

306 Introduction to Programming in Turing

 named type ageRange)

var largest, smallest : ageRange
minmax (age, smallest, largest, number)
put "Age span in group is ", largest – smallest

To use the procedure minmax in this AgeSpan program you
simply write its name followed in parentheses by the actual
parameters you are using. Here the array of values is called age;
this actual parameter corresponds to the formal parameter list.
Then the actual parameters smallest and largest correspond with
the formal parameters minimum and maximum respectively.
When the procedure changes the value of minimum it is actually
changing the value of smallest. When it changes maximum it is
really changing largest. Actual parameters that are going to be
changed by the procedure, that is variable parameters, must
always be variables. Other parameters may be values such as
100 rather than variables.

The variable age is declared as an array of ageRange. This
declares that it is to be an integer between 1 and 120 inclusive.
This is a subrange of all integers. If you try to read an age into the
array age that is outside this range an execution error will be
reported. It is a way of protecting yourself against absurd values
of the data.

Since largest and smallest are chosen from the array age they
too are given the same subrange data type. The type of the
formal parameters maximum and minimum of minmax must be
changed to ageRange to match the type of largest and smallest.
The declaration of the procedure can be anywhere in the program
as long as it precedes its use and is not nested inside a construct
such as a loop.

17.3.2 An Example Using Both a Function and Procedures

This example uses one function and two procedures; in it the
marks in a class of students are displayed in a bar chart (or
histogram) to show the statistical distribution.

Chapter 17 : Subprograms with Array Parameters 307

% The "TextBarChart" program
% Plot a bar chart for class marks
var count : int

procedure readFreq (var freqList : array 1 .. * of int)
for i : 1 .. upper (freqList)

get freqList (i)
end for

end readFreq

function maximum (list : array 1 .. * of int) : int
var biggest : int := list (1)
for i : 2 .. upper (list)

if list (i) > biggest then
biggest := list (i)

end if
end for
result biggest

end maximum

procedure graph (grafList : array 1 .. * of int, width : int)
const scale := width / maximum (grafList)
for i : 1 .. upper (grafList)

put repeat ("*", round (scale * grafList (i)))
end for
put "Maximum is ", maximum (grafList)
put "Scale is ", scale : 10 : 2

end graph

put "Enter number of entries in list: " ..
get count
var entries : array 1 .. count of int
readFreq (entries)
graph (entries, 60)

The procedure readFreq reads in the array of marks. The
procedure graph plots the bar chart of asterisks. It uses the
function maximum to scale the graph so the longest bar is 60
asterisks long. The declaration of the function maximum is not
placed inside the declaration of graph even though it is used only

308 Introduction to Programming in Turing

by it because, in Turing, procedures and functions cannot be
nested. Nesting means that one is inside the other.

We could use a function for maximum because it produces a
single value. The minmax procedure produced two values. Notice
that the actual parameter in graph that corresponds to the formal
parameter width is 60. A value can be used since it is not a
variable parameter.

In the function maximum the actual length of the array
corresponding to the formal parameter list is not given as a
parameter the way that we gave the number of elements as a
parameter in the minmax procedure earlier in the chapter. We
can use the predefined function upper to give the actual size of
the array. The value of upper(list) will be the length of the array of
the actual parameter that corresponds to the formal parameter
list.

17.4 Local and Global Variables and
Constants

In the subprograms that we have shown so far all the
variables and constants used inside the subprogram have been
declared in the subprogram, either in the list of formal parameters
or in the body of the subprogram. These variables or constant
names are not accessible outside the subprograms. They are
local variables or constants just as the index of a counted for is
local to the body of the for loop. You cannot use it outside.

In the subprogram there may be declared a variable that has
the same name as one used in the main program or in other
subprograms used by the main program. For example, in the
barChart program the variable i is used in readFreq, maximum,
and graph. This does not matter because in any one subprogram
the i is a local variable.

The variables or constants declared in the main program
before the definition of subprograms are all accessible to those

Chapter 17 : Subprograms with Array Parameters 309

subprograms. We say they are global variables or constants.
For example, in the main program barChart the variable count is
declared before the subprograms readFreq and graph are
defined. If we included the statement put count in either of the
procedures readFreq or graph, the value of count would be
output.

If we included this put statement in the function maximum it
would work but we would be warned that the function maximum
had the side effect of changing the output. Functions, remember,
can only have a value and should not change any variables, input
anything, or output anything.

We sometimes make use of the fact that variables and
constants declared in the main program are global to all its
subprograms to avoid long lists of parameters. This is true of
programs which contain subprograms that are intended only for
use by that particular main program. Subprograms intended for
general use should not use global variables.

Here is an example where global variables are used.

% The "UseGlobals" program
% Read names and output list of names in order
put "How many names are there? " ..
var number : int
get number
var name : array 1 .. number of string (40)

procedure readNames
put "Enter the names"
for i : 1 .. number

get name (i)
end for

end readNames

procedure sortNames
% Sort list of names alphabetically
% The sorting algorithm is a Shell sort
% See if you can follow it
% It is a modification of the bubble sort
var space : int := number

310 Introduction to Programming in Turing

loop
space := floor (space / 2)
exit when space <= 0
for i : space + 1 .. number

var j : int := i – space
loop

exit when j <= 0
if name (j) > name (j + space) then

const temp := name (j)
name (j) := name (j + space)
name (j + space) := temp
j := j – space

else
j := 0 % Signal exit

end if
end loop

end for
end loop

end sortNames

procedure outputNames
% Output sorted list
put "Here are the names in order"
for i : 1 .. number

put name (i)
end for

end outputNames

readNames
sortNames
outputNames

The global variables number and name are used in each one
of the subprograms. There are no parameters in any one of them.
There are however local variables in the subprograms. For
example, sortNames declares its local variables space and j as
well as a local constant temp. Because j is declared inside a for
loop it is local to that for loop. It is not accessible even outside
that. Similarly the constant temp is local to the if..then..else
construct. When you leave that construct its value is inaccessible.

Chapter 17 : Subprograms with Array Parameters 311

Each time you enter the if construct temp is redeclared as a
constant with a new value. We could have used a var here but
calling it a constant is more precise.

The procedure sortNames uses a method (or algorithm) of
sorting invented by Donald Shell. It is called a Shell sort.
Perhaps you can see how the list of names is sorted by this
method. On the other hand you do not need to know how a
procedure actually works to use it in your own program. The
predefined function floor gives the integer just less than its real
actual parameter space/2.

To be more generally useful the sortNames procedure should
not use the global variables name and number but have instead
parameters. Its header line would then be

procedure sortNames (var name:
array 1 .. * of string(*), number: int)

Then the variables name and number would be parameters.
Notice that we declare the upper bound of the range of the array
name by an asterisk and the length of the string by an asterisk.
The length of the string is also dynamic, it can change. The
calling statement in the main program for sortNames would be

sortNames (name, number)

The actual parameters here have the same names as the
formal parameters in the declaration of the procedure sortNames.
There is nothing wrong with having it this way if it happens to suit
you. We try to show examples with different names for the formal
and actual parameters so you can see that they need not be the
same. If they are all identical then global variables would have
worked just as well.

17.5 Maintaining a Sorted List
The program in the previous chapter sorted an unsorted list all

at once. However, once a sorted list is obtained, it is often

312 Introduction to Programming in Turing

preferable to maintain the list’s order as elements are added or
deleted rather than to re-sort the list from scratch. A list is sorted
in ascending order if each value in the list is no larger than the
one that comes after it in the list.

When a list is sorted. maintaining the order when inserting or
deleting values requires more work. Think of the list as being laid
out from left to right. Before a value can be inserted, the
appropriate location for it must be found in the list; then the value
in that location, together with all the values to the right of that
location, must be shifted to the right to make room for the new
value. Before a value can be deleted, its location must be found
in the list then all the values to the right of that location must be
shifted to the left.

In Turing, only one element of an array can be manipulated at
a time. To shift a part of a list left or right, the values must be
shifted one at a time. To shift to the right, the last element must
be moved to the right and the previous element must then be
moved into the vacated position, and so on. In Figures 17.1 and
17.2, the numbers indicate the order in which the elements must
be copied.

Element to be inserted here

1234

Original last element

New last element

Figure 17.1 Inserting an Element in an Array

To move to the left, the first element must be moved to the left
and the second element must then be moved into the vacated
position, and so on.

Chapter 17 : Subprograms with Array Parameters 313

Element to be deleted here

321

Original last element

New last element

Figure 17.2 Deleting an Element in an Array

Here is a program that maintains a list of names in sorted
order in an array. This program does not save the list of names
between executions. It also does not check the number of names
in the list compared to the maximum array size.

% The "SortedList" program
% Maintains a sorted list of names

% Add a name to the sorted list in the correct position
procedure AddName (name : string, var list : array 1 .. * of string (*),

var listSize : int)
% The array index where the name should be placed
var insertPoint : int := 1

% Determine the location in the array where the name should be
% placed
loop

exit when insertPoint > listSize or list (insertPoint) > name
insertPoint := insertPoint + 1

end loop

% Shift the remaining items over to make room at insertPoint
for decreasing i : listSize .. insertPoint

list (i + 1) := list (i)
end for

314 Introduction to Programming in Turing

% Insert the name at insertPoint
list (insertPoint) := name

listSize := listSize + 1

put name, " added. The list now has ", listSize, " name(s)"
end AddName

% Delete a name in the sorted list
procedure DeleteName (name : string, var list : array 1 .. * of

string (*), var listSize : int)
% The array index holding the name to be deleted
var deletePoint : int := 1

% Determine the location in the array of the name to be deleted
loop

exit when deletePoint >= listSize or list (deletePoint) >= name
deletePoint := deletePoint + 1

end loop

% Make certain the name was found in the list
if list (deletePoint) not= name then

put name + " not found in the list"
return

end if

% Shift the remaining items over to remove the element at
% deletePoint
for i : deletePoint + 1 .. listSize

list (i – 1) := list (i)
end for

listSize := listSize – 1

put name, " deleted. The list now has ", listSize, " name(s)"
end DeleteName

% Display the sorted list of names
procedure ListNames (list : array 1 .. * of string (*), listSize : int)

for i : 1 .. listSize
put i : 3, " ", list (i)

end for

Chapter 17 : Subprograms with Array Parameters 315

end ListNames

% Main program
var listOfNames : array 1 .. 100 of string (40)
var sizeOfList : int := 0
var choice : int
var name : string (40)
loop

put "What is your command:"
put " (1) Add a name"
put " (2) Delete a name"
put " (3) List the names"
put " (4) Exit"
put "Choice: " ..
get choice
if choice = 1 then

put "Enter the name to be added: " ..
get name : *
AddName (name, listOfNames, sizeOfList)

elsif choice = 2 then
put "Enter the name to be deleted: " ..
get name : *
DeleteName (name, listOfNames, sizeOfList)

elsif choice = 3 then
ListNames (listOfNames, sizeOfList)

elsif choice = 4 then
exit

else
put "Illegal command"

end if
end loop

17.6 Exercises
1. Write and test a function subprogram whose value is the

average rounded to the nearest integer of a series of marks
stored in an array of integers.

316 Introduction to Programming in Turing

2. Write and test a function subprogram called maxi whose value
is the maximum of an array of real values.

3. Write and test a subprogram called range whose value is the
difference between the smallest and largest of an array of real
values. This function may use the function maxi and a similar
function mini as developed for Exercise 2.

4. Write and test a subprogram called stats which produces the
average and the variance of an array of real values. The
variance is computed by taking the sum of the squares of the
differences between the average and the individual values,
and dividing this by the number of values.

5. Try running the TextBarChart program of this chapter using
sample data which you store in a file called Student.

6. Try to follow the shell sort algorithm included in the program
UseGlobals given in this chapter by inserting output
statements in the sortNames procedure to look at the sorting
process as it proceeds.

7. Write and test a subprogram called bubbleSort that uses the
bubble sort method to sort a series of integers in descending
order.

8. Repeat Exercise 7 but write a subprogram called shellSort
that uses the shell sort method rather than the bubble sort.

9. Ask the user for a list of names. Use a sentinel to stop the
inputting of names. Output the names in alphabetical order
getting rid of any duplicate names.

10. The clock procedure is used to give the current processor time
in milliseconds. To time something use the clock procedure
twice, once before and then after the process you are timing.
The difference is the time elapsed for the process to occur.
Here is an example.

var x, y : int
clock (x)
% The body of what you are timing.
clock (y)
put "The time elapsed is ", y – x, " ms."

Chapter 17 : Subprograms with Array Parameters 317

Create files of 1000, 2000, and 3000 randomly created
integers with values from 1 to 500. Use bubble sort, shell sort,
and selection sort to sort each of the files and time and record
the length of time required for each sort. Use a barchart
program to make three graphs which you should display on
separate windows separated by calls to getch. On the first
chart, display the times the three sorts required to sort the
1000 integer file. The second chart should do the same for the
2000 integer file and the third chart should display the 3000
integer file. Which sort is the most time-efficient?

17.7 Technical Terms
bubble sort
dynamic array size
side effect of function
histogram

graph
Shell sort algorithm
dynamic string size

319

Chapter 18

Records and Files

18.1 Declaration of Records

18.2 Inputting and Outputting Records

18.3 Arrays of Records

18.4 Binding to Records

18.5 An Example using a File of Records

18.6 Moving Records in Memory

18.7 Text Files

18.8 Binary Files

18.9 Random Access to Records on Disk

18.10 Modification of Records on Disk

18.11 Deletion of Records on Disk

18.12 Exercises

18.13 Technical Terms

320 Introduction to Programming in Turing

18.1 Declaration of Records
Frequently we want to store information in files where each

record in the file is a number of pieces of information about a
single entity. For example, we might want a file of records of
employees of a company. Each individual record might have
stored: a name, an address, an employee number, a birth date,
and so on. In Turing we use a record data type to store such
data. Each record is a collection of fields.

Here is the declaration of a record called student used to hold
a student’s record.

var student:
record

name: string (20)
address: string (40)
phone: string (8)

end record

In the declaration the record data type begins with the
keyword record and ends with end record. In between is a list of
the fields and their data types. Each of the three fields is of the
type string but of different maximum length.

If in the program where such a record is declared you wanted
to refer to a particular field you would use its full name which
consists of the name of the record followed by a period then the
name of the field. For example, the name for the phone number
field is

student.phone

Chapter 18 : Record and Files 321

18.2 Inputting and Outputting Records
To input a record, each field of the record is read separately.

Similarly on output each field is output separately.
Here is a program to read a student record and output it, just

to show you how it is done.

% The "ReadAndOutputRecord" program
% Reads a record and outputs it
var student :

record
name : string (20)
address : string (40)
phone : string (8)

end record
loop

% Read in record
put "Enter name"
exit when eof
get student.name : *
put "Enter address"
get student.address : *
put "Enter phone"
get student.phone : *
% Output record
put student.name : 20, student.address : 40,

student.phone : 8
end loop

Each of the fields is entered and read as a line so that they
can contain blanks. Since input is by lines a get skip is not
necessary before the eof test. On output all three fields are on the
same line.

322 Introduction to Programming in Turing

18.3 Arrays of Records
Very frequently we have not just one record but an array of

records. For example, we might want to have an array of student
records for a whole class. Such an array might be a file of
student records. Here is a program to read in student records into
an array from a data file of at most 100 records called Students.
This file is prepared so that on a line are the three fields of a
single record. The name is left justified in the first 20 character
positions and filled in on the right with blanks if necessary.
Similarly the address is in the next 40 positions and the phone
number in the last 8.

Here is the program.

% The "ReadStudentFile" program
% Reads records from student file into array
% then allows you to read individual records at random
type studentType :

record
name : string (20)
address : string (40)
phone : string (8)

end record

const maxFile := 100
var studentFile : array 1 .. maxFile of studentType
% Read records from student file
var students : int
open : students, "Students", get
assert students > 0
var count := 0
loop

get : students, skip
exit when eof (students)
count := count + 1
get : students, studentFile (count).name : 20,

studentFile (count).address : 40,
studentFile (count).phone : 8, skip

Chapter 18 : Record and Files 323

end loop
put "There are ", count, " students in file"
var number : int
put "Enter negative record number to exit"
loop

put "Give number of record you want: " ..
get number
exit when number < 0
assert number <= count
put studentFile (number).name : 20,

studentFile (number).address : 40,
studentFile (number).phone : 8

end loop

18.4 Binding to Records
In order to simplify the input and output instructions for

records we can use the bind construct. For example, for the input
of the student record we could replace the get by these two lines:

bind var which to studentFile (count)
get: students, which.name: 20, which.address: 40,

which.phone: 8

The bind construct makes programs more efficient and easier
to read. In this example which becomes the name of
studentFile(count).

18.5 An Example using a File of Records
Suppose that you have a file of records of houses for sale by

a real estate firm in disk file called Sale. For each house we have
its color, its location, and its price in dollars. This file called Sale
is to be read into the computer’s memory so that information can
be obtained from the file. For instance, you can ask for a listing of

324 Introduction to Programming in Turing

all houses satisfying particular criteria, such as costing less then
$100,000.

% The "HouseLocator" program
% Reads series of records for houses
% Allows questions about records in file
type houseType :

record
color : string (10)
location : string (20)
price : int

end record
const maxHouses := 100
var houseFile : array 1 .. maxHouses of houseType

procedure readFile (var entry : array 1 .. * of houseType, var count :
int)

% Read houseType records into an array
var sale : int
open : sale, "HouseInfo", get
assert sale > 0
count := 0
loop

get : sale, skip
exit when eof (sale)
count := count + 1
bind var house to entry (count)
get : sale, house.color : 10, house.location : 20,

house.price
end loop

end readFile

procedure outputRecord (h : houseType)
put h.color : 10, h.location : 20, h.price : 10

end outputRecord

function wanted (house : houseType, desiredColor, desiredLocation :
string (*),
desiredUpperPrice : int) : boolean

result (house.color = desiredColor or
desiredColor = "any ")
and (house.location = desiredLocation

Chapter 18 : Record and Files 325

or desiredLocation = "any ")
and (house.price <= desiredUpperPrice)

end wanted
procedure readSpecs (var Color : string (*), var location : string (*),

var price : int)
put "Answer 'any' for color or location when it doesn't matter."
put "What color of house do you want?"
get Color % must pad with blanks
Color := Color + repeat (" ", upper (Color) – length (Color))
put "What location of house do you want?"
get location % must pad with blanks
location := location + repeat (" ", upper (location) – length (location))
put "What is your highest price in dollars?"
get price

end readSpecs

var howMany : int
readFile (houseFile, howMany)
var wantedColor : string (10)
var wantedLocation : string (20)
var upperPrice : int
readSpecs (wantedColor, wantedLocation, upperPrice)
for i : 1 .. howMany

if wanted (houseFile (i), wantedColor,
wantedLocation, upperPrice) then

outputRecord (houseFile (i))
end if

end for

A type of data is defined called houseType which is a record
type. It has three fields: color, location, and price. The variable
houseFile is declared to be an array of 100 such records. The
procedure readFile reads records of type houseType into an
array until it gets an end-of-file. It returns the count of the number
of records read. In the readFile procedure the formal parameter
entry is the array name for the records. The record entry (count)
is the one being read at any time. The three fields of entry (count)
record are referred to as entry (count).color,
entry (count).location, and entry (count).price. Similarly the

326 Introduction to Programming in Turing

procedure outputRecord outputs its record called house one field
at a time, namely house.color, house.location, and house.price.

The function wanted is a boolean function meaning that its
value is either true or false. In the procedure readFile we want to
refer to fields of a record whose name is entry (count). It makes a
more efficient program if we bind this name to another name
house then, within the scope of the readFile function, anytime we
say house we mean entry (count). This is particularly true if what
we are binding is an array element. What we bind to must be a
variable.

18.6 Moving Records in Memory
One of the principal advantages of the record data structure is

that an entire record can be moved (copied) from one memory
location to another with a single assignment statement. (A record
cannot however be input or output as a single item.) This is very
useful when sorting records.

Suppose we wanted to sort the real estate records of the
previous example in ascending values of their price fields. Here is
a program that reads such records from a disk file, sorts them,
and stores the sorted list in another disk file.

% The "SortHouseInfo" program
% Reads file of records from disk file
% Sorts records in order of ascending price
% Stores sorted records on disk
type houseType :

record
color : string (10)
location : string (20)
price : int

end record
const maxHouses := 100
var houseFile : array 1 .. maxHouses of houseType
var count : int

Chapter 18 : Record and Files 327

procedure readDiskFile (fileStream : int,
var houseFile : array 1 .. * of houseType,
var count : int)

% Read records from file
count := 0
loop

get : fileStream, skip
exit when eof (fileStream)
count := count + 1
bind var house to houseFile (count)
get : fileStream, house.color : 10,

house.location : 20, house.price
end loop

end readDiskFile

procedure outputFileToDisk (fileStream : int,
houseFile : array 1 .. * of houseType, count : int)

% Output records from memory to disk
for i : 1 .. count

const house := houseFile (i)
put : fileStream, house.color : 10,

house.location : 20, house.price
end for

end outputFileToDisk

procedure sortFile (var houseFile :
array 1 .. * of houseType, count : int)

% Sort list into ascending order of price
% Use Shell sort algorithm
var space : int := count
loop

space := floor (space / 2)
exit when space <= 0
for i : space + 1 .. count

var j : int := i – space
loop

exit when j <= 0
if houseFile (j).price >

houseFile (j + space).price then
const temp : houseType := houseFile (j)
houseFile (j) := houseFile (j + space)

328 Introduction to Programming in Turing

houseFile (j + space) := temp
j := j – space

else
j := 0
% Signal exit

end if
end loop

end for
end loop

end sortFile

var filename : string
put "What is the file name for the unsorted records? " ..
get filename
var inStream : int
open : inStream, filename, get
assert inStream > 0
readDiskFile (inStream, houseFile, count)
close : inStream
sortFile (houseFile, count)
put "What is the file name for the sorted records to be? " ..
get filename
var outStream : int
open : outStream, filename, put
assert outStream > 0
outputFileToDisk (outStream, houseFile, count)

The sortFile procedure uses the Shell sort algorithm but this
time the items being swapped are records. They are moved
around in memory just as easily as single variables. The record
type houseType is defined in the main program and is thus global
to the three subprograms. Other than this, no global variables or
constants are used. The names of the actual parameters are the
same as the formal parameters. Notice that the bind statement is
used in readDiskFile and that the fields of each record must be
input or output separately.

The files that are created this way are text files and may be
edited in the Turing Environment if desired. For example, the
fields of any of the records may be altered, new records added,
or records deleted using the editor.

Chapter 18 : Record and Files 329

18.7 Text Files
So far we have output records to disk files one field at a time

using a put statement. A file of records had to be output
sequentially, one record after the next, until it was closed. It could
then be opened and read sequentially using get statements,
where the fields of the record were input one at a time. Files of
this nature can be examined in the editor and changes made
directly to records by the Turing editing system. They are called
text files; the program and data files that we have prepared in
the editing system or output from a program so far are all text
files.

18.8 Binary Files
There is an entirely different way of storing records in files. It

is in binary (or internal) form. Files stored in binary form cannot
be displayed in the window and edited in the Turing editor. They
are produced as files on the disk by using the write output
statement (instead of put) and input using the read statement
(instead of get).

Records that are stored as text files are of variable length,
each field taking up the space it actually requires. For example, a
15 character name takes less space than a 25 character name.
Records stored in binary form to be accessed randomly are all of
the same length. This length is the length specified in the
definition of the corresponding record data type.

Storing records in binary form may take more or less space on
the disk than storing them in text form but it has distinct
advantages. First, records may be output as a whole and input as
a whole.

Second, because the size is fixed, you can replace a record in
the file with a modified record without it being of a different length
than the original. This means that a file can be opened for both

330 Introduction to Programming in Turing

reading and writing, whereas the text files that we have used
were opened either for input or output but not for both at the
same time.

The binary file is opened, as are text files, using an open
statement. The open statement has the form

open : fileNumber, fileName, capability {, capability}

where fileNumber is a variable that has been declared as of int
type and fileName is either a string constant which gives the
name of the file on the disk or is a string variable whose value is
the file’s disk name. If the file is able to be opened properly a
positive integer value is assigned to fileNumber. For binary files,
the various values for capability are read, write, seek, or mod.
The first two indicate whether the file is opened for binary
reading, writing, or both. The seek indicates that the position in
the file for the next read or write can be set by a seek statement
or accessed by a tell statement. The mod is used when you are
opening to write and not read but do not want to erase the current
file.

We will describe a somewhat simplified use of binary input
and output. The read statement has the form

read : fileNumber, readItem {, readItem}

where the readItem is a variable to be read in binary form using
the size of the item that has been declared.

The write statement has the form

write : fileNumber, writeItem {, writeItem}

where a writeItem has a value to be written in binary form. The
size of items to be written must be kept uniform from record to
record.

There is also a close statement which has the form

close : fileNumber

When a file is opened, the operating system allocates space
for it. Most operating systems have a limit to the number of files
that may be opened at any one time, so it is important to close a

Chapter 18 : Record and Files 331

file when it is no longer needed. Note that Turing does
automatically close all open files when the program is finished
executing, however, it is still good practice to have your program
close all open files.

18.9 Random Access to Records on Disk
To position for input/output in the disk file we use a statement

of the form

seek : fileNumber, filePosition

where filePosition has an integer value giving the number of bytes
from the beginning of the file to the point where you want to begin
reading or writing. The start of the file is position zero. To position
at the end of the file you use

seek : fileNumber, *

The position of this offset can be determined by using the tell
statement which has the form

tell : fileNumber, filePosition

where filePosition is a variable of type int which is set by the tell
to the offset in bytes.

18.9.1 An Example of Random Access to a Binary File on Disk

Here is a program that stores a number of student records in
binary form in a disk file called StudentData. The information for
the records is read in from the keyboard. As well, it keeps track of
where each student’s record is located in the file in an array in the
main memory. Then the records on the disk are accessed
randomly.

% The "SchoolDirectory" program
% Prepares a binary disk file of student records

332 Introduction to Programming in Turing

% input from keyboard and stored in disk file " StudentData "
% As records are stored their position in the file is
% recorded in an array called "directory"
% Records are then accessed randomly
type studentType :

record
name : string (30)
address : string (40)
year : int

end record
var student : studentType
% Open file called "StudentData" for writing
var fileNumber : int
open : fileNumber, "StudentData", read, write, seek
assert fileNumber > 0
const maxStudents := 500
type whereAbouts :

record
name : string (30)
location : int

end record
type directoryType :

array 1 .. maxStudents of whereAbouts
var directory : directoryType
var filePosition : int
var count : int
put "How many students are there? " ..
get count
put "Enter ", count, " student records"
put " "

procedure find (var name : string (30), var position : int)
% Uses global variables directory and count
% See lookup program in chapter on arrays.
if length (name) < 30 then

% Pad with blanks
name := name + repeat (" ", 30 – length (name))

end if
position := – 1
% Search list for name by linear search
for i : 1 .. count

if name = directory (i).name then

Chapter 18 : Record and Files 333

position := directory (i).location
exit

end if
end for

end find
% Place labels to show user where to enter data
put "name" : 30, "address" : 40, "year"
for i : 1 .. count

% Determine where next record will start in file
tell : fileNumber, filePosition
% Store filePosition as location in directory
get skip, student.name : 30, student.address : 40,

student.year
directory (i).name := student.name
directory (i).location := filePosition
write : fileNumber, student

end for
% Access the records randomly
var wantedStudent : string (30)
loop

var place : int
put "Enter name of student"
get skip, wantedStudent : *
find (wantedStudent, place)
if place not= – 1 then

seek : fileNumber, place
read : fileNumber, student
put "Here is the information you want"
put "name" : 30, "address" : 40, "year"
put student.name : 30, student.address : 40,

student.year
else

put "Student not in file"
end if

end loop

334 Introduction to Programming in Turing

18.10 Modification of Records on Disk
The major advantage of binary files over text files is that a

record takes the same amount of space on the disk, regardless of
the actual contents of the record. This means that unlike text
files, you can change the contents of a single record in a binary
file without having to change the contents of the entire file. For
large files containing millions of records, this is the only practical
technique for making data bases.

Because each record is stored on disk with a fixed length, it is
possible to jump to a specified record without having to read the
records ahead of it. For example, if a given record is 400 bytes in
size, to skip to the beginning of the 8th record, you move to the
2800th byte in the file using

seek : f, 2800

The byte position in the file is 2800 rather than 3200 because
the position of the first record is always 0. Thus the file position
for the beginning of the nth record in the file is (n – 1) * record
size.

To change a record in a file, you get the position in the file of
the beginning of the record using the tell statement. You then
read the contents of the record into memory. The record in
memory is then changed as needed. To rewrite the data onto the
disk, the program does a seek to the beginning of the record on
disk and then writes the record. There is no danger of writing over
top of the next record because, in binary files, the size of the
record on disk does not depend on its contents. A record holding
a name and phone number that takes 400 bytes of space on disk
takes that space regardless of whether the name is ÒTom WestÓ
or ÒArthur Frederick Schumacher IIIÓ.

Note that a binary file is usually larger than a text file holding
the same data. That is because each binary record stored on disk
reserves space for the maximum size of the data being written.
For example, an integer in a binary file is always stored in 4
bytes. In a text file, it requires 1 byte per digit. A string always

Chapter 18 : Record and Files 335

uses space corresponding to the string’s largest possible size
plus one extra byte. For example, in

var a : string (20)
var b : string

the variable a has a maximum length of 20 and is stored in 21
bytes. The variable b, because it has no declared size, has a
maximum length of 255 characters and is stored in 256 bytes.

To determine the size of a record, you use the sizeof function.
This function returns the size of a record in memory.

var r : record
name : string
age : int

end r
put sizeof (r)

The next program creates an address book that contains
names and addresses and allows changes to be saved on disk
between runs. It allows you to add records and to change the
address associated with a name. We will handle deleting records
in the next section although we have Òleft roomÓ for it in the
program.

The program keeps an array of the names corresponding to
the records in the file. The first element in the names array is the
name of the first record in the file, and so on. All lookup
operations are done using the name array in memory. Once the
name is found, then the corresponding record in the file is read
and the full record is displayed.

We say the name field of the record is the key to the lookup
operation. An array of keys is kept in memory while the whole
record reamins on disk. In our example there are only two fields
in the record so the fraction of the storage space required in
memory, compared to what is required by the whole record, is
large. In a real-life data base, there might be dozens of fields
associated with each name.

Here is the header for the program. It defines the type of
record used for each entry in the file and determines the size of
the record using the sizeof function. It also defines the name of

336 Introduction to Programming in Turing

the file where the records are stored as a constant. By using the
constant rather than a file name in quotes, it reduces the chance
that a misspelling occurs in the open statement.

% The "AddressBook" program
% Creates and maintains an addressbook of names and addresses.

% The type of each record in the file
type entryType :

record
name : string
address : string

end record
% Calculate the record size
const recordSize : int := sizeof (entryType)
const maxEntries : int := 100
const bookFileName : string := "address.dat"

var numNames : int % The number of names in the file

% The array stores the names in the same order as
% those in the records in the disk file.
var names : array 1 .. maxEntries of string

The readNames procedure reads the data file and placesl the
names into an array. The rest of the data of the record is not
stored. In this way, a database on disk can be gigabytes in size,
while the array of keys in memory is much smaller.

% Read records in the file, initializing the
% array of names and determining the number of records.
procedure readNames

var f : int
var entry : entryType
numNames := 0
open : f, bookFileName, read
if f not= 0 then

loop
exit when eof (f)

Chapter 18 : Record and Files 337

read : f, entry
numNames := numNames + 1
names (numNames) := entry.name

end loop
close : f

end if
put numNames, " names read in"

end readNames

The findName function examines the array of names and
returns the index of the array where the match occurs. This gives
the position of the record in the file. If it does not find a match, it
returns –1.

% Find a matching name in the array of names, returning
% -1 if no matching name is found.
function findName (name : string) : int

for i : 1 .. numNames
if name = names (i) then

result i
end if

end for
result – 1

end findName

The lookUpName procedure is used to output the data in the
address book that corresponds with a given name. It uses
findName to determine the location in the data file of the name. If
the name is found, then it opens the file and moves to the
beginning of the record on disk using

seek : f, (recordNumber – 1) * recordSize

It then reads in the record and outputs the data (in this case, the
address). In the procedure, the line

assert f > 0

338 Introduction to Programming in Turing

occurs after the open statement. This is because we have
already determined that the we are reading a record where we
have already matched a name.
If the open returns a non-positive stream number, it would mean
that for some reason the file became unreadable between the
initial reading of the file in the readNames procedure and this
procedure, or we have a bug in our program. In cases like
hardware failure an assertion failure is an appropriate response.

When dealing with errors that occur because of incorrect user
response, an assertion failure is not appropriate. Instead the user
should get an error message and a chance to correct the input
(as we do in the main section of the program).

% Output the address associated with the name.
procedure lookUpName (name : string)

var recordNumber : int := findName (name)
var f : int
var entry : entryType
if recordNumber = – 1 then

put name, " not in address book"
else

% Open the file, seek to the beginning of the
% record and read the entry.
open : f, bookFileName, read, seek
assert f > 0
seek : f, (recordNumber – 1) * recordSize
read : f, entry
put "Address: ", entry.address
close : f

end if
end lookUpName

Chapter 18 : Record and Files 339

The changeAddress procedure reads the record associated
with the name in the same manner as lookUpName. It gets the
new address from the user. It then seeks back to the beginning of
the record and writes the revised record into the data file. When
the file is opened, it is going to be both read and written to. This
means that the file must be opened for read, write, and mod. If
the mod is forgotten, the file will be deleted if it already exists.
The file must also be opened for seek as we use the seek
command to move to the appropriate location in the file before
reading and writing the record.

Record n+1Record n

After seek

Record n+1Record n

After read

Record n+1Record n

After second seek

Record n+1

After write

New Recordn

1 2

3 4

Figure 18.1 Changing a Record

% Change the address associated with the name
procedure changeAddress (name : string)

var recordNumber : int := findName (name)
var entry : entryType
var f : int

if recordNumber = – 1 then
put name, " not in address book"

else
% Open the file, seek to the beginning of the
% record and read the entry.
open : f, bookFileName, read, write, mod, seek
assert f > 0
seek : f, (recordNumber – 1) * recordSize
read : f, entry
% Now get the new address, seek back to the

340 Introduction to Programming in Turing

% beginning of the record and write the new entry.
put "Old Address: ", entry.address
put "New Address: " ..
get entry.address : *
seek : f, (recordNumber – 1) * recordSize
write : f, entry
close : f

end if
end changeAddress

The addEntry procedure must add the new name to the array
and add the record to the data file. To open the file, we open the
file for write, mod, and seek.

Once the file has been opened, we must move to the end of
the file. To do so, we use

seek : f, *

which moves the file pointer to the end of the file. We could also
have used

seek : f, (numNames – 1) * recordSize

as that is also the location of the end of the file.

% Add an entry to the end of the array and to the end of
% the file.
procedure addEntry (name, address : string)

var f : int
var entry : entryType
% Add to the array of entries
numNames := numNames + 1
names (numNames) := name
% Add the record to the file
entry.name := name
entry.address := address
% Open the file, seek to the end of the file and
% write the record.
open : f, bookFileName, write, mod, seek
assert f > 0
seek : f, *

Chapter 18 : Record and Files 341

write : f, entry
close : f

end addEntry

The deleteEntry procedure is a place holder. When designing
a program for future expansion, it is worthwhile to create the
procedures that will be needed, even if the actual procedure has
not yet been created. This makes it much easier to add in the
needed section without having to worry about changing every
aspect of the program. The place holder deleteEntry procedure is
in the spirit of a step-wise refinement where we leave the further
refinements for a later time.

% We do not implement this yet. However, we do leave
% a place for it to make it easy to add to this program
% later.
procedure deleteEntry (name : string)

put "Deletion is not yet supported"
end deleteEntry

The main program reads in a user choice and then, if
necessary gets a name and/or address from the user. It then calls
the relevant procedure.

% Main Program
var name, address : string
var choice : int

% Read the names in the array
readNames

loop
% Get the user's choice
put "Enter 1 .. Look up a name"
put " 2 .. Change an address"
put " 3 .. Add a name"
put " 4 .. List all names"
put " 5 .. Delete a Name"

342 Introduction to Programming in Turing

put " 6 .. Exit"
put "Choice: " ..
get choice

if choice = 1 then
% Look up a name.
put "Enter the name: " ..
get name : *
lookUpName (name)

elsif choice = 2 then
% Change the address associated with a name.
put "Enter the name: " ..
get name : *
changeAddress (name)

elsif choice = 3 then
% Add an entry to the address book.
put "Enter the new name: " ..
get name : *
put "Enter the address: " ..
get address : *
addEntry (name, address)

elsif choice = 4 then
% List all the names in the address book.
put "Names in address book"
for i : 1 .. numNames

put names (i)
end for

elsif choice = 5 then
% Delete an entry in the address book.
put "Enter the name: " ..
get name : *
deleteEntry (name)

elsif choice = 6 then
% Exit the loop
exit

else
% Invalid choice
put "Choice must be between 1 and 6"

end if
end loop

Chapter 18 : Record and Files 343

18.11 Deletion of Records on Disk
We have seen how records can be added to a binary file on

disk. We now deal of deleting records from a file.
In the previous examples, when we added records, we simply

appended the records to the end of the file. To delete records is
somewhat more complicated. When dealing with an array in
memory, if you want to delete an element in the middle, you
move all the array elements above that element down one (see
Section 17.5). However, when dealing with a large file on disk,
the same technique is not practical. The time needed to read
each record in the file from disk and write the record back onto
the disk may well be prohibitive.

Instead, we overwrite the record, marking it as deleted. When
we next add a record, we go through the file looking for records
that we previously marked deleted and write the new record at
that location. If there are no records marked deleted, then we add
the new record to the end of the file.

To add deletion to the previous example, we add a constant
and change two procedures: the addEntry and deleteEntry
procedures. The constant is the name used when we want to
mark an entry deleted.

const deletedEntry : string := "[Deleted Entry]"

The string is chosen to make certain that we will never have a
legitimate entry in the address book with that name.

The deleteEntry procedure searches for the name in the array
using the findName function. If it find it, it modifies the name in
the array to Ò[Deleted Entry]Ó. It then seeks to the beginning of
the corresponding record in the data file and writes a record with
the name and address of Ò[Deleted Entry]Ó.

% Delete an entry in the address book by
% overwriting it with a deleted entry marker.
procedure deleteEntry (name : string)

var recordNumber : int := FindName (name)

344 Introduction to Programming in Turing

var entry : entryType
var f : int

if recordNumber = – 1 then
put name, " not in address book"

else
% Change the entry in the names array
names (recordNumber) := deletedEntry

% Open the file, seek to the beginning of the
% record and write the entry.
entry.name := deletedEntry
entry.address := deletedEntry
open : f, bookFileName, write, mod, seek
assert f > 0
seek : f, (recordNumber – 1) * recordSize
write : f, entry
close : f

end if
end deleteEntry

The addEntry procedure is modified so that it looks for the
name Ò[Deleted Entry]Ó. If it finds it, it writes the new name in
the array and writes the new name and address at the
corresponding location in the file. If it doesn’t find an entry with
the name Ò[Deleted Entry]Ó, it increments the number of names
in the address book and sets the name to be inserted at the end
of the array and the records to be written at the end of the file.

% Add an entry to the end of the array and over a record
% marked deleted or to the end of the file.
procedure addEntry (name, address : string)

var recordNumber : int := findName (deletedEntry)
var f : int
var entry : entryType
% Add the record to the file
entry.name := name
entry.address := address

if recordNumber = – 1 then

Chapter 18 : Record and Files 345

% There are no deleted entries, add the new
% entry the array and indicate that the new record
% be written at the end of the file.
numNames := numNames + 1
recordNumber := numNames

end if

% Add to the array of entries
names (recordNumber) := name
% Open the file, seek to location in the file and
% write the record.
open : f, bookFileName, write, mod, seek
assert f > 0
seek : f, (recordNumber – 1) * recordSize
write : f, entry
close : f

end addEntry

In programs where a large number of records have been
deleted, it is common to write a compressor program. This
program opens up the old data file for reading and a new data file
for writing. It then reads records from the old data file and writes
the records to the new data file only if they are not marked
deleted. In this way, the new data file has no deleted records.

18.12 Exercises
1. Write a program to prepare a disk file of records called

OnHand suitable for use in the HouseLocator program of this
chapter. In the HouseLocator program the records are read
from the file HouseInfo by the procedure readFile. Change
this procedure so that records for houses are read from the
disk file OnHand. You can use the Turing editor if you are
having difficulty prepare the file OnHand.

2. Use the SortHouseInfo program to sort the records you stored
on the disk file OnHand in question 1.

346 Introduction to Programming in Turing

3. A simple record consists of two fields: a name and a phone
number. Write a program to prepare a disk file called Mine of
such records and put your personal telephone list in it. Adapt
the SortHouseInfo program of the chapter to sort your file
Mine alphabetically.

4. Add a new entry to file Mine of the previous question so that
the file is still sorted.

5. Delete an entry from the file Mine of personal phone numbers
so that there are no deleted records in the file.

6. Write and test a subprogram that uses the shell sort method
to sort the records in an existing binary file called Inventory.
The records, which have fields item and price should be
sorted in descending order according to the price.

7. Write a procedure to input a series of records for the above
record structure into the binary file Sample.

8. Write a function that calculates the number of records in the
file Sample. Does this correspond to the number of records
you created when you ran Exercise #8?

9. Modify the AddressBook program to check that the number of
records in the file never exceeds the maximum size of the
array in memory.

18.13 Technical Terms

Chapter 18 : Record and Files 347

record
field of record
record declaration
file of records
text file
binary file
bind to record
write statement
read statement

seek statement
tell statement
close statement
record data type
input of record
output of record
array of records
access to record
random access to record

349

Chapter 19

Advanced Topics

19.1 Binary Search

19.2 Sorting by Merging

19.3 Files of Records in Linked Lists

19.4 Highly Interactive Graphics

19.5 Exercises

19.6 Technical Terms

350 Introduction to Programming in Turing

19.1 Binary Search
In this chapter we include a number of longer, more advanced

programs which involve some important ideas. The first is a
method of searching for information in an array of records that
are kept in alphabetical order called binary search. The next is a
method of sorting an array of records using a recursive method
called successive merge sort. The third is an efficient method of
keeping a list of records in alphabetical order even though there
are many changes in the file, both insertions and deletions. This
is in a linked list.

The last example is one where a user is interacting with a
character graphic display in a rapid fashion as is needed in many
computer games. This we call highly interactive graphics.

A file of student records is stored in an array in such a way
that the records are in alphabetic order of the name fields of the
records. We say the name field is the key to the ordering. In the
chapter on arrays we showed a method of searching that
compared a name you were looking for in an array in turn with
each of the elements, starting at the first until the search was
over. This is a linear search method and is fine for short lists. If
you have a list of 50 names, on the average you would have to
compare the name you sought with 25 names before you found it.

The method of binary search is much more efficient for long
lists that have been sorted into order. To search you first
compare the name sought with the name in the middle record of
the array. If the name sought comes alphabetically before the
name in the middle then we discard the second half of the array;
the name sought must be in the first half. In this way we cut the
size of the array to be searched in half using one comparison.
Next we compare the name sought with the middle record of the
upper half of the array, again discarding the portion where the
name could not possibly be.

Chapter 19 : Advanced Topics 351

Here is a program for searching using the binary search
technique.

% The "BinarySearch" program
% Finds a particular record in a sorted file
% using the binary search method
type studentType :

record
name : string (30)
address : string (40)
phone : string (8)

end record
const maxFile := 500
var studentFile : array 1 .. maxFile of studentType
var count : int

procedure readFile
% Uses global variables
var students : int
open : students, "SortedStudents", get
assert students > 0
count := 0
loop

get : students, skip
exit when eof (students)
count := count + 1
get : students, studentFile (count).name : 30,

studentFile (count).address : 40,
studentFile (count).phone : 8

end loop
put "There are ", count, " students in file"

end readFile

procedure search (studentFile : array 1 .. * of studentType,
var key : string (*), count : int, var place : int)

var first, last, middle : int
if length (key) <= 30 then

% Pad with blanks
key := key + repeat (" ", 30 – length (key))

end if

352 Introduction to Programming in Turing

% Initialize the binary search
first := 1
last := count
% Search until one element is left
% If key sought is in list this will be it
loop

middle := (first + last) div 2
if studentFile (middle).name >= key then

% Discard last half of list
last := middle

else
% Discard first half of list including middle
first := middle + 1

end if
% exit when only one record left
exit when first >= last

end loop
if studentFile (first).name = key then

place := first
else

place := 0
end if

end search

readFile
var nameSought : string (30)
loop

var place : int
put "Enter name of student to be found (\"stop\" to exit)"
get nameSought : *
exit when nameSought = "stop"
search (studentFile, nameSought, count, place)
if place not= 0 then

bind sought to studentFile (place)
put "name" : 30, "address" : 40, "phone" : 8
put sought.name : 30, sought.address : 40,

sought.phone : 8
else

put "Not in file"
end if

end loop

Chapter 19 : Advanced Topics 353

The binary search is very efficient for large files. A list of 256
records can be searched using 8 comparisons each comparison
dividing it into half until only 1 record is left. The linear search
would on the average require 128 comparisons. Quite a
difference!

19.2 Sorting by Merging
If two lists are each sorted into alphabetic order then a single

ordered list can be produced by merging the two. We will assume
that the two lists are stored in a single array of records called
studentFile; the one list goes from element first to element middle
of the array and the second list from middle + 1 to last.

Here is a procedure for merging the two lists. It uses a
working area called temp which is an array of the same length as
the total list.

procedure merge (var studentFile : array 1 .. * of studentType,
first, middle, last : int)

% Merges two sorted lists of records one going from
% first to middle the other from middle + 1 to last
var temp : array 1 .. last of studentType
% Initialize pointers to the two sorted lists
var point1 := first
var point2 := middle + 1
for point3 : first .. last

% point3 locates item in merged list
if point1 < middle + 1 and (point2 > last or

studentFile (point2).name >
studentFile (point1).name) then

% Move record from first half
temp (point3) := studentFile (point1)
% Advance pointer 1
point1 := point1 + 1

354 Introduction to Programming in Turing

else
% Move record from second half
temp (point3) := studentFile (point2)
% Advance pointer 2
point2 := point2 + 1

end if
end for
% Copy merged array back to original place
for point3 : first .. last

studentFile (point3) := temp (point3)
end for

end merge

This merge procedure can be used by a recursive procedure
called mergesort to sort an unsorted file stored in the array
studentFile. Here is the mergeSort procedure.

procedure mergesort (var studentFile : array 1 .. * of studentType,
first, last : int)

if last > first then
const middle := (first + last) div 2
mergesort (studentFile, first, middle)
mergesort (studentFile, middle + 1, last)
merge (studentFile, first, middle, last)

end if
end mergesort

The mergesort procedure calls itself until in a call the last is
equal to first and then there is only one element in the file and the
file is sorted.

Here is a program that uses merge and mergesort.

% The "MergeSort" program
type studentType :

record
name : string (30)
address : string (40)
phone : string (8)

Chapter 19 : Advanced Topics 355

end record
var maxFile := 100
var studentFile : array 1 .. maxFile of studentType
var count : int

 (copy procedure readFile of BinarySearch opening file “UnsortedStudents”)

 (copy merge procedure here)

 (copy mergesort procedure here)

procedure outFile
% Uses global variables
% Output file in order
put "name" : 30, "address" : 40, "phone" : 8
for i : 1 .. count

put studentFile (i).name : 30,
studentFile (i).address : 40,
studentFile (i).phone : 8

end for
end outFile

% This is the main program
readFile
mergesort (studentFile, 1, count)
outFile

19.3 Files of Records in Linked Lists
Sometimes records must be kept constantly in a sorted order

even though records are being added or deleted repeatedly. One
way to maintain such a sorted file, without constantly resorting the
records, is to use the Turing Environment editor and insert or
delete records as suggested in the chapter on records. Another
way is to keep the file in memory in the form of a linked list.

In a linked list the actual physical order of records in an array
of records does not matter. But each record has an extra field
that indicates where the next record in the ordered sequence is to

356 Introduction to Programming in Turing

be found. This is called the link or pointer to the next record. The
last record in the linked list has a link which is zero (null) to
indicate that there are no more records.

Here is a program that allows insertions and deletions to a
linked list of name and address records that is maintained in
alphabetical order. It also allows you to list the file in order. The
list could be used to print mailing labels. In the program there are
two linked lists being maintained: one of the label records, the
other of vacant record spaces in the array. The variable first
points to the first record in the list of labels; the variable vacant
points to the first vacant space.

% The "MaintainLinkedList" program
% Allows insertions and deletions to list
% Permits listing in order
type labelType :

record
name : string (20)
address : string (25)
link : int

end record
const null := 0
% Avoid using keyword label
const maxLabels := 100
var labels : array 1 .. maxLabels of labelType
% Initialize pointers to beginning of linked lists
% The label record list is empty
var first := null
% Initialize links of vacant array
var vacant : int := 1
% Each vacant record in array points to next
for i : 1 .. maxLabels – 1

labels (i).link := i + 1
end for
% Last record in array has null link
labels (maxLabels).link := null

procedure insert (newLabel : labelType)
% Uses global variables
% Insert a new label record

Chapter 19 : Advanced Topics 357

% Obtain a vacant space for new label record
assert vacant not= null
var spot := vacant
vacant := labels (vacant).link
% Place new label record in vacant space
labels (spot).name := newLabel.name
labels (spot).address := newLabel.address
% See if new label goes first in list
if first = null or newLabel.name < labels (first). name then

labels (spot).link := first
first := spot

else
% Find place to insert new label record
var previous := first
var next := labels (first).link
loop

exit when next = null or
newLabel.name < labels (next).name

previous := next
next := labels (next).link

end loop
% Fix links to make insertion
labels (previous).link := spot
labels (spot).link := next

end if
end insert

procedure delete (oldLabel : labelType)
% Uses global variables
% Find label to be deleted from linked list
var old : int := first
var previous : int
loop

exit when old = null or labels (old).name = oldLabel.name
previous := old
old := labels (old).link

end loop
% Remove label record from linked list
if old = null then

put oldLabel.name, " not found"
return

elsif first = old then

358 Introduction to Programming in Turing

first := labels (old).link
else

labels (previous).link := labels (old).link
end if
% Return unused record to vacant list
labels (old).link := vacant
vacant := old

end delete

procedure outputList
% Output linked list in order
var current := first
loop

exit when current = null
put labels (current).name : 20,

labels (current).address : 25
current := labels (current).link

end loop
end outputList

% Respond to commands
var newLabel, oldLabel : labelType
var reply : int
const inserts := 1
const deletes := 2
const lists := 3
const stops := 4
loop

put "Do you want to 1 - insert, 2 - delete, 3 - list, 4 - stop? " ..
get reply
case reply of

label inserts :
put "Enter name of label to be inserted"
get newLabel.name
put "Enter address"
get newLabel.address
insert (newLabel)

label deletes :
put "Enter name of record to be deleted"
get oldLabel.name
delete (oldLabel)

Chapter 19 : Advanced Topics 359

label lists :
outputList

label stops :
exit

label :
put "Bad command, try again"

end case
end loop

This is a rather long example and you may not be able to
follow it all. Remember: there are two linked lists, one with valid
data, the other vacant. As a record is inserted, an element is
removed from the vacant list and added to the valid list. Deletion
produces the reverse effect.

In the delete procedure, if we come to the end of the linked list
and do not find the name that is to be deleted, the value of old
will be null. In this case we output an error message and say that
the name you asked to have deleted was not found in the list.
After the error message, a return statement occurs. This causes
an exit from the delete procedure to the statement in the main
program following its calling statement.

19.4 Highly Interactive Graphics
Many computer games are based on animated graphics. In

these games the person playing is required to respond rapidly to
some event pictured in the window such as a ghost, or a monster,
or a witch approaching who must be warded off with the correct
magic spell. (Unfortunately many computer games are far more
violent.) Your response must be to press one of three keys on the
keyboard before it is too late. To ward off the ghost a g is correct,
m for monster, and w for the witch. If you press the wrong key or
do not depress a key at all before the menace reaches the
bottom of the window you lose the game.

360 Introduction to Programming in Turing

We will use three procedures called ghost, monster, and witch
to draw a picture whose top center is at the location (row,
column). When we, for example, call the witch procedure with

witch (5, 20)

the picture of a witch is drawn with its top center at location (5,
20) in the window. The height of each picture is 8 rows. The width
is 7 columns. The picture will be animated beginning with its top
center in row 1 and in a randomly chosen column between 4 and
76 inclusive. The picture will move straight down the window.
When the top center reaches row 18 the picture will be at the
bottom of the window.

Here is the game program. It uses the predefined procedure
getch which will input a single character. As well the boolean
function hasch is used. The value of hasch is true if a character
has been typed since the last getch was executed.

% The "Spooky" program
% A game for a dark night

procedure witch (row, column : int, symbol : string (1))
locate (row, column)
put symbol ..
locate (row + 1, column – 1)
put repeat (symbol, 3) ..
locate (row + 2, column – 2)
put repeat (symbol, 5) ..
locate (row + 3, column – 4)
put repeat (symbol, 8) ..
locate (row + 4, column – 2)
put symbol, repeat (" ", 3), symbol ..
locate (row + 5, column – 2)
put symbol, repeat (" ", 3), symbol ..
locate (row + 6, column – 1)
put symbol, " ", symbol ..
locate (row + 7, column)
put symbol ..

end witch

Chapter 19 : Advanced Topics 361

procedure monster (row, column : int, symbol : string (1))
% you fill this in
locate (row, column)
put repeat (symbol, 2) ..

end monster

procedure ghost (row, column : int, symbol : string (1))
% you fill this in
locate (row, column)
put repeat (symbol, 3) ..

end ghost

procedure animate (Time, column : int,
procedure menace (row, column : int,
symbol : string (1)),
magic : string (1), var win : boolean)

var finished : boolean := false
var spell : string (1)
%Suppress cursor and echo of input character
setscreen ("nocursor")
setscreen ("noecho")
win := false
% Move menace from top to bottom of window
for line : 1 .. 17

% Plot menace using asterisks
menace (line, column, "*")
% Test to see if a character has been typed
if hasch then

% Input a single character and assign to spell
getch (spell)
if spell = magic then

win := true
end if
% Prepare to stop the animation
finished := true

end if
delay (Time) % Delay before erasing
% Erase plot of menace
menace (line, column, " ")
% Stop animation if finished
exit when finished

end for

362 Introduction to Programming in Turing

% Unsuppress cursor and echo of input character
setscreen ("cursor,echo")

end animate

loop
put "Do you want to play this scary game? (y or n): " ..
var reply : string (1)
get reply
exit when reply not= "y"
var win : boolean
cls
const blue := 9
color (blue) % Draw figures in blue
var count := 0
var Delay : int
put "Choose a delay time for animation: " ..
get Delay
loop

% Choose a column at random
var column : int
randint (column, 4, 76)
% Choose a spook at random
var spook : int
randint (spook, 1, 3)
case spook of

label 1 :
animate (Delay, column, witch, "w", win)

label 2 :
animate (Delay, column, monster, "m", win)

label 3 :
animate (Delay, column, ghost, "g", win)

end case
if win then

count := count + 1
else

exit
end if

end loop
locate (24, 1)
put "You warded off ", count, " menaces"

end loop

Chapter 19 : Advanced Topics 363

19.5 Exercise
1. Replace the binary search procedure search in the

BinarySearch program by a linear search procedure and
compare the speed of operation of the two.

2. How many comparisons are required using a binary search if
there are 1024 records in the file.

3. Trace the action of the MergeSort program for a file of 10
records where the names are originally in this order

Bill Teresa Win Inge Wayne
Penny Ric Mark Chris Harriet

4. Use a procedure like merge to merge two files that are stored
on the disk under the names Master and Update.

5. Experiment with a linked list of phone number records by
adapting the MaintainLinkedList program.

6. Use the MaintainLinkedList program as it stands to work with
house records. Add an extra command to let you store your
linked list of records on disk when you want.

7. Modify the Spooky program so that the menace’s picture
wiggles back and forth at random about the chosen column as
it moves down the window. You will have to allow more space
for the wiggle so perhaps the column that the menace moves
down should be limited to 15 to 65.

19.6 Technical Terms
linked list
link or pointer
null pointer
insertion of record
deletion of record
return

getch

hasch

merge sort
binary search
linear search

364 Introduction to Programming in Turing

echo or suppress echo of
input character

setscreen ("echo")
setscreen ("noecho")

draw cursor or suppress
cursor

setscreen ("cursor")
setscreen ("nocursor")

365

Chapter 20

Advanced
Pixel Graphics

20.1 Advanced Graphics Concepts

20.2 Drawing a Tilted Box

20.3 Repeating a Pattern

20.4 Animation Using a Buffer

20.5 Bar Charts

20.6 Pie Charts

20.7 Graphing Mathematical Equations

20.8 Exercises

20.9 Technical Terms

366 Introduction to Programming in Turing

20.1 Advanced Graphics Concepts
Certain features of pixel graphics cannot be explored until you

understand a little more mathematics and the use of arrays and
subprograms. In this chapter we will look at how to store complex
images in memory so that an image can be repeated. This is
particularly important for the animation of images more complex
than dots, boxes, or ovals.

Also we will work out subprograms that will be generally useful
for displaying statistical information by bar charts or pie charts,
and for drawing curves from mathematical formulas or
experimental data.

20.2 Drawing a Tilted Box
The box drawn using drawbox is oriented so that its sides are

parallel to the sides of the window. We can draw a box at an
angle, say theta to the sides of the window. This program uses
some trigonometry.

Here is the program.

% The "TiltedBox" program
% The square box of length size is tilted so that its bottom
% makes an angle theta degrees with x-axis
% The upper left corner of the box is at the center
var theta : real
put "Enter angle of tilt in degrees " ..
get theta
var size : int
put "Enter size of square box in pixels " ..
get size
% Draw box
const xcenter := maxx div 2

Chapter 20 : Advanced Pixel Graphics 367

const ycenter := maxy div 2
const c := cosd (theta)
const s := sind (theta)
% Draw box in cyan
const x1 := xcenter
const y1 := ycenter
const x2 := x1 + round (size * c)
const y2 := y1 – round (size * s)
const x3 := x2 + round (size * s)
const y3 := y2 + round (size * c)
const x4 := x1 + round (size * s)
const y4 := y1 + round (size * c)
drawline (x1, y1, x2, y2, cyan)
drawline (x2, y2, x3, y3, cyan)
drawline (x3, y3, x4, y4, cyan)
drawline (x4, y4, x1, y1, cyan)
var reply : string (1)
getch (reply)

20.3 Repeating a Pattern
Here is a subprogram called drawflag that will draw a pattern

that is w pixels wide and h pixels high with its lower left corner at
(x, y)

368 Introduction to Programming in Turing

Figure 20.1 Output of the drawflag Procedure

in two colors color1 and color2.

procedure drawflag (x, y, w, h, color1, color2 : int)
const halfw := round (w / 2)
const halfh := round (h / 2)
drawbox (x, y, x + w, y + h, color2)
drawfill (x + 1, y + 1, color1, color2)
drawline (x + halfw, y, x + halfw, y + h, color2)
drawline (x, y + halfh, x + w, y + halfh, color2)

end drawflag

Here is a program that produces this wallpaper design

Figure 20.2 Output of the DrawDesign Program

using the drawflag procedure to repeat the flag pattern.

Chapter 20 : Advanced Pixel Graphics 369

% The "DrawDesign" program
% Repeats a pattern in window
setscreen ("graphics")

(include procedure drawflag here)

% Draw a magenta and green pattern
const width := 20
const height := 10
for xcount : 0 .. 9

for ycount : 0 .. 9
const x := xcount * (width + 2)
const y := ycount * (height + 2)
drawflag (x, y, width, height, green, magenta)

end for
end for
var reply : string (1)
getch (reply)

Another way of programming this design would be to draw the
flag once then use the predefined procedure takepic to record the
pattern in a buffer array and then use drawpic repeatedly to place
the pattern anywhere you want in the window.

The procedure takepic records the pixel values that are in a
rectangle with bottom left and top right corners (x1, y1) and (x2,
y2) in an integer array called buffer. The form of takepic is

takepic (x1, y1, x2, y2, buffer)

To determine what size the integer array buffer should be you can
use the predefined function sizepic in the form

sizepic (x1, y1, x2, y2)

To reproduce a picture stored in buffer by takepic with its lower
left corner at (x, y) you use drawpic in the form

drawpic (x, y, buffer, picmode)

where picmode has a value 0 if you want to reproduce the original
picture exactly, or 1 if you want to superimpose the picture onto
the pixels it is covering. Picmode 1, also called XOR mode,
combines the picture with the covered pixels in a way that

370 Introduction to Programming in Turing

effectively shows both the picture and what it is covering.
Picmode 1 is used mainly when you want to erase a picture you
have drawn, as you do in animation. Drawing the same picture
with picmode 0 first then with picmode 1 draws the picture then
erases it.

Here is a program to make the same pattern as the
DrawDesign program.

% The "DrawDesign2" program
% Repeats a pattern in window
setscreen ("graphics")

(include procedure drawflag here)

const width := 20
const height := 10
% Draw flag in bottom left-hand corner
drawflag (0, 0, width, height, magenta, green)
var snapshot : array 1 .. sizepic (0, 0, width, height) of int
takepic (0, 0, width, height, snapshot) % record the image
drawpic (0, 0, snapshot, 1) % erase the original

for xcount : 0 .. 9
for ycount : 0 .. 9

const x := xcount * (width + 2)
const y := ycount * (height + 2)
drawpic (x, y, snapshot, 0)

end for
end for
var reply : string (1)
getch (reply)

20.4 Animation Using a Buffer
Here is the FlagRise program that raises the flag up a flagpole

using the procedure drawflag as well as sizepic, takepic, and
drawpic.

Chapter 20 : Advanced Pixel Graphics 371

% The "FlagRise" program
% Raises a flag up a pole

(include procedure drawflag here)

setscreen ("graphics")
cls

% Draw brown flagpole
const poleleft := 150
const polelow := 50
const poleright := poleleft + 3
const polehigh := polelow + 100
drawbox (poleleft, polelow, poleright, polehigh, brown)
drawfill (poleleft + 1, polelow + 1, brown, brown)

% Draw flag at bottom of pole
const flagheight := 20
const flagwidth := 40
const flagleft := poleright + 1
const flaglow := polelow
const flagright := flagleft + flagwidth
const flaghigh := flaglow + flagheight
drawflag (flagleft, flaglow, flagwidth, flagheight, green, red)

% Record flag picture in buffer
% First declare buffer named camera
var camera : array 1 .. sizepic (flagleft, flaglow,

flagright, flaghigh) of int
takepic (flagleft, flaglow, flagright, flaghigh, camera)
for y : polelow + 1 .. polehigh – flagheight

% Erase former picture
drawpic (flagleft, y – 1, camera, 1)
% Draw picture in higher position
drawpic (flagleft, y, camera, 0)
sound (y * 25, 1)

end for
var reply : string (1)
getch (reply)

372 Introduction to Programming in Turing

20.5 Bar Charts
Statistical data is often represented by bar charts or pie

charts. When we are displaying information in bar charts we try to
show as much contrast as possible between the height of the bar
that represents the largest value and the one representing the
smallest.

Figure 20.3 Output of the BudgetBarChart Program

Here is a program to represent the relative amounts a person
spends on various expenses in a month in a bar chart.

% The "BudgetBarChart" program
% Displays monthly expenses graphically

function maxlist (list : array 1 .. * of int, listlength : int) : int
% Finds the largest element of list
var maximum := list (1)
for i : 2 .. listlength

maximum := max (maximum, list (i))
end for
result maximum

end maxlist

procedure barchart (item : array 1 .. * of int, itemcount : int)
% Draws a bar chart representing array item
const chartleft := maxx div 2

Chapter 20 : Advanced Pixel Graphics 373

const chartlow := maxy div 2 + 20
const chartwidth := maxx div 2
const chartheight := maxy div 2 – 30
const barspacing := round (chartwidth / itemcount)
const barwidth := barspacing – 3
const barheightscale := chartheight / maxlist (item, itemcount)

for i : 0 .. itemcount – 1
const barleft := chartleft + i * barspacing
const barheight := round (item (i + 1) * barheightscale)
const Color := i mod maxcolor + 1
drawfillbox (barleft, chartlow,

barleft + barwidth, chartlow + barheight, Color)
end for

end barchart

setscreen ("graphics")
var expense : array 1 .. 8 of int
put "Enter monthly expenses to nearest dollar"
put "Rent =" ..
get expense (1)
put "Food = " ..
get expense (2)
put "Clothing = " ..
get expense (3)
put "Insurance = " ..
get expense (4)
put "Car cost = " ..
get expense (5)
put "Taxes = " ..
get expense (6)
put "Utilities = " ..
get expense (7)
put "Entertainment = " ..
get expense (8)
barchart (expense, 8)
var reply : string (1)
getch (reply)

374 Introduction to Programming in Turing

20.6 Pie Charts
We will now give procedures that can replace the procedure

barchart in the previous program so that a pie chart such as

Enter monthly expenses to nearest dollar
Rent = 275
Food = 150
Clothing = 65
Insurance = 10
Car cost = 80
Taxes = 80
Utilities = 20
Entertainment = 100

Figure 20.4 Output of the BudgetPieChart Program

can be drawn from the same data by the single statement

piechart (expense, 8)

We will use a procedure called piechart along with procedures
called fillslice and sumlist .

% The "BudgetPieChart" program
% Displays monthly expenses graphically

function sumlist (list : array 1 .. * of int, listlength : int) : int
% Sum the elements of list
var sum := list (1)
for i : 2 .. listlength

sum := sum + list (i)
end for
result sum

end sumlist
procedure piechart (item : array 1 .. * of int, itemcount : int)

Chapter 20 : Advanced Pixel Graphics 375

% Draw pie chart
const xcenter := 3 * maxx div 4
const ycenter := maxy div 2
const radius := maxy div 2
var initialAngle : int
var finalAngle := 0
const itemscale := 360 / sumlist (item, itemcount)
var sumItems := 0.0
for i : 1 .. itemcount

sumItems := sumItems + item (i)
initialAngle := finalAngle
finalAngle := round (sumItems * itemscale)
const Color := i mod maxcolor + 1
drawfillarc (xcenter, ycenter, radius, radius,

initialAngle, finalAngle, Color)
end for

end piechart

setscreen ("graphics")
var expense : array 1 .. 8 of int
put "Enter monthly expenses to nearest dollar"
put "Rent =" ..
get expense (1)
put "Food = " ..
get expense (2)
put "Clothing = " ..
get expense (3)
put "Insurance = " ..
get expense (4)
put "Car cost = " ..
get expense (5)
put "Taxes = " ..
get expense (6)
put "Utilities = " ..
get expense (7)
put "Entertainment = " ..
get expense (8)
piechart (expense, 8)
var reply : string (1)
getch (reply)

376 Introduction to Programming in Turing

20.7 Graphing Mathematical Equations
In the introductory chapter on graphics we showed how to

draw the graph of a simple curve, a parabola whose equation was

y = x ** 2

for values of x going from 0 to 14. We had to work out what scale
was appropriate so that the graph would take up most of the
window.

Now we will show a graph plotting program that uses pixels
and works out on an appropriate scale for you. To use the
program you must first calculate the values of x and y to be
plotted and then call the procedure graphplot in the form.

graphplot (x, y, pointcount, graphtitle)

where x and y are the arrays of real values for x and y. There are
pointcount such values. The graph will be labelled by graphtitle.

Graph of y = x ** 2

Figure 20.5 Output of the DrawParabola Program

Chapter 20 : Advanced Pixel Graphics 377

Here is the program that would plot the parabola we had
before.

% The "DrawParabola" program
% Plots a graph of y = x ** 2
% for values of x from 0 to 14
% Number of points to be plotted is 100
setscreen ("graphics")

(include the following procedures minmax and graphplot here)

const pointcount := 100
var x, y : array 1 .. pointcount of real
const xleft := 0.0
const xright := 14.0
const xdifference := (xright – xleft) / (pointcount – 1)
% Compute corresponding values of x and y
for i : 1 .. pointcount

x (i) := xleft + (i – 1) * xdifference
y (i) := x (i) ** 2

end for
graphplot (x, y, pointcount, "Graph of y = x ** 2")

Here are the procedures that you must include.

procedure minmax (list : array 1 .. * of real,
listlength : int, var listmin, listmax, listrange : real)

% Find the minimum, maximum and range of the list
listmin := list (1)
listmax := list (1)
for i : 2 .. listlength

listmin := min (listmin, list (i))
listmax := max (listmax, list (i))

end for
listrange := listmax – listmin

end minmax

procedure graphplot (x, y : array 1 .. * of real,
pointcount : int, title : string)

378 Introduction to Programming in Turing

% Label graph at top of window
locate (1, 1)
put title
% Layout plotting area
const plotleft := 0
const plotlow := 0
const plotright := maxx
const plothigh := maxy – 20
drawbox (plotleft, plotlow, plotright, plothigh, 1)

var xmin, xmax, xrange : real
var ymin, ymax, yrange : real
minmax (x, pointcount, xmin, xmax, xrange)
minmax (y, pointcount, ymin, ymax, yrange)
const xscale := (plotright – plotleft) / xrange
const yscale := (plothigh – plotlow) / yrange

% Draw axes if in plotting area
if ymin <= 0 and ymax > 0 then

% Plot x-axis
const yzero := round (– ymin * yscale) + plotlow
drawline (plotleft, yzero, plotright, yzero, 2)

end if
if xmin <= 0 and xmax > 0 then

% Plot y-axis
const xzero := round (– xmin * xscale) + plotleft
drawline (xzero, plotlow, xzero, plothigh, 2)

end if

% Plot graph
for i : 1 .. pointcount

const xplot := round ((x (i) – xmin) * xscale) +
plotleft

const yplot := round ((y (i) – ymin) * yscale) +
plotlow

drawdot (xplot, yplot, 3)
end for

end graphplot

Notice that in putting the label on the graph in the graphplot
procedure we used the predefined procedure locate rather than

Chapter 20 : Advanced Pixel Graphics 379

locatexy. This works the same way as locate for character
graphics in the form

locate (row, column)

except that for pixel graphics there are only 40 columns.

20.8 Exercises
1. Create a subprogram from the TiltedBox program of this

chapter with parameters that let you change its color, size,
and tilt. Now write a main program that draws a series of such
boxes, with one common corner, tilted at angles ranging from
0 to 360 degrees at intervals of 10 degrees and where the
size of the box increases as you go to larger angles. Choose a
scale that keeps the final box completely in the window.

2. Try making a basic pattern and replicating it all over the
window. Can you devise a more complicated replication than
just an all-over pattern?

3. Create a bar chart using the barchart procedure in this
chapter to represent the relative lengths of the various
chapters in the this book.

4. Create a pie chart using the piechart procedure in this chapter
to represent the relative amount of time you spend on the
different courses you are studying this year.

5. Modify the program BudgetBarChart to plot a graph of the
parabola y = x**2 from 0 to 14. Make the first bar represent
x=0, the second x=1, and so on. There will be 15 bars in your
chart.

6. Use the graphplot procedure to graph the equation y = sin(x)
for x going from 0 to 720 degrees.

7. Modify the graph plotting procedure graphplot so that instead
of plotting closely spaced dots you plot a series of straight
lines between more widely spaced points. Use this modified
procedure to plot a graph of experimental data that you invent
where the values for x are not necessarily uniformly spaced.

380 Introduction to Programming in Turing

8. The graphplot procedure assumes that the graph has a single
value of y for each value of x . Many graphs have two values,
for example, a circle. How would you plot such graphs? Notice
that for a circle of radius r that

x = r * sind (theta)
y = r * cosd (theta)

Try forming dots from these equations expressing x and y in
terms of r and the angle theta that the radius from the center
makes counterclockwise from the three o’clock position.

9. Animate an apple falling from a tree.
10.A beach ball is made of six pieces of plastic: 2 red, 2 green,

and 2 brown. The ball is assembled so that no two pieces of
the same color touch each other except at the two end points.
Write a program to draw a picture of the inflated beach ball
from an end-on point of view. Can you program a side view of
the ball? Try it.

11. Write a program with an animated ball bouncing up and down
several times.

12. Repeat Exercise 11 but this time, each bounce should be
lower than the previous bounce.

20.9 Technical Terms
takepic

sizepic

drawpic

buffer

picmode
XOR mode
bar chart
scaling a graph

381

Chapter 21

Animation and GUIs

21.1 The Mouse in Turing

21.2 Animation using the Pic Module

21.3 Animation Using the Sprite Module

21.4 The GUI Module

21.5 Playing Music from Sound Files

21.6 Exercises

21.7 Technical Terms

382 Introduction to Programming in Turing

21.1 The Mouse in Turing
This chapter covers a wide variety of graphics topics for use

by students writing advanced graphically oriented programs. The
chapter also introduces the Turing module, that allows students
to write programs that have Graphical User Interface (GUI)
components such as buttons, check boxes, and text fields.

Turing has several predefined subprograms to help handle the
mouse. These include:

mousewhere,
buttonmoved, and
buttonwait

The mousewhere procedure

mousewhere (var x, y, b : int)

is used to determine the current location of the mouse cursor. It
sets x and y to the current location of the mouse and sets b to 1 if
the mouse button is currently pressed, otherwise b is set to 0.

Here is an example program called MouseTrails that use the
mousewhere procedure. It draws a small filled circle around the
mouse if the button is pressed. Each time through the program’s
loop, mousewhere is called to set x, y, and b. If the button is
pressed and the mouse location is moved, then a circle is drawn
in the new location in a new color.

The MouseTrails program only draws to the window when the
mouse location has changed. This is a very common technique
used to reduce flashing. Without it, on fast computers the
program might update the window too frequently, producing an
obvious flash.

Chapter 21 : Animation and GUIs 383

% The "MouseTrails" program.
var x, y, oldx, oldy, b : int := – 1
var c : int := 0
loop

% Get the current location of the mouse
mousewhere (x, y, b)
% if the mouse has moved and the button is pressed.
if (x not= oldx or y not= oldy) and b = 1 then

% Draw a circle around the mouse location
drawfilloval (x, y, 20, 20, c)
% Change the color
c := (c + 1) mod 16
oldx := x
oldy := y

end if
end loop

Here is what the output of the MouseTrails program looks like.

Figure 21.1 The Execution window from MouseTrails

384 Introduction to Programming in Turing

The buttonmoved function

buttonmoved (direction : string) : boolean

also handles mouse activity. It returns true if a mouse press or
release has occurred. If the direction parameter is set to
ÒdownÓ, buttonmoved returns true if the mouse button has been
pressed. If direction is set to ÒupÓ, buttonmoved returns true if
the mouse button has been released. This function can be
thought of as hasch for the mouse button.

The buttonwait procedure

buttonwait (direction : string, var x, y, buttonnumber,
buttonupdown : int)

waits until a mouse button press has occurred and then returns
the location of the mouse in x and y. It also returns the number of
the button pressed and whether the button was pressed or
released. We will not be using the last two parameters in our
example. This procedure can be thought of as getch for mouse
buttons.

The next example program is more complicated. It is a game
called MouseWhack. In the game, a series of colored squares is
displayed in the window in random locations. Each square
disappears after a short interval. The object of the game is to
click on a colored square before the square disappears. We call
the buttonmoved procedure to check if a mouse press has
occurred before we call buttonmoved. Calling buttonmoved and
then buttonwait prevents execution from pausing until the user
presses the mouse button.

The program is organized as a loop within a loop. At the
beginning of the outer loop, a random location, color, and
duration for the square are chosen. Execution then enters the
inner loop. The inner loop checks to see whether the square has
been visible for the prescribed duration and exits the inner loop if
it has. If it does not exit, the program checks if a mouse button
has been pressed by using buttonmoved. If a mouse button has
been pressed, it reads the location where the mouse was
pressed by using buttonwait.

Chapter 21 : Animation and GUIs 385

Because we know from buttonmoved that a mouse button
press has occurred, buttonwait returns immediately with the
location of the mouse button press. The location is compared to
the location of the square and if the button press is within the
square, the window is cleared and a message is displayed. The
program then terminates by calling return in the main program. If
the mouse missed the square, the variable holding the number of
failed clicks is increased by 1 using the statement

failedClicks += 1

This statement is a short form for

failedClicks = failedClicks + 1

Each time the program leaves the inner loop, the variable
holding the number of squares missed is incremented by 1.
Execution then returns to the top of the outer loop and a new
square is drawn.

% The "MouseWhack" program.
var failedClicks, missedBlocks : int := 0
var exitLoopTime, currentTime : int
var x, y, clr, duration : int
var mx, my, dummy1, dummy2 : int
const SIZE : int := 20
% The outer loop
loop

% Set a random location, color, and duration for the square
randint (x, 0, maxx – SIZE)
randint (y, 0, maxy – SIZE)
randint (clr, 1, 15)

% Draw the square
drawfillbox (x, y, x + SIZE, y + SIZE, clr)

clock (exitLoopTime)
randint (duration, 300, 800)
exitLoopTime := exitLoopTime + duration
% The inner loop
loop

386 Introduction to Programming in Turing

% Has the duration of the square expired
clock (currentTime)
exit when currentTime > exitLoopTime
% If a button press has occurred
if buttonmoved ("down") then

% get the location of the button press
buttonwait ("down", mx, my, dummy1, dummy2)
% Is it within the square
if x <= mx and mx <= x + SIZE and

y <= my and my <= y + SIZE then
% You clicked the square!
cls
put "You WON! You missed ", failedClicks,

" clicks and ", missedBlocks, " blocks."
return

else
failedClicks += 1

end if
end if

end loop
missedBlocks += 1
% Erase the square by drawing it in the background color
drawfillbox (x, y, x + SIZE, y + SIZE, colorbg)

end loop

21.2 Animation using the Pic Module
In the previous chapter, we discussed how to animate an

object using takepic. The method we used, however, does not
work well when drawing an object over a complicated
background. In this section, we show how to move an irregularly-
shaped object over a complicated background. We will also show
how to load an image from a file on disk.

We will be using predefined subprograms with a different
naming convention. All the predefined subprograms we have
used so far have had names that were lowercase, for example,
drawbox. The predefined subprograms used in this section have a
two-part name: a module name and a subprogram name

Chapter 21 : Animation and GUIs 387

separated by a period. The subprograms belonging to a particular
module are all related to a particular purpose. For example, the
Pic module handles pictures, the Dir module creates directories
and lists their contents, and the Window module manipulates
windows. A complete list of the modules and the subprograms
within each one can be found in Appendix C in the back of this
book. Note that the module name and each word in the
subprogram name start with a capital letter, for example
Pic.FileNew, Dir.Get, and Window.Open.

The Pic module contains subprograms for creating, drawing,
and disposing of pictures. The Pic.FileNew and Pic.New functions
are used to create new pictures. Unlike the takepic procedure that
saves an area of the window in an integer array buffer that you
declare, the Pic.FileNew and Pic.New functions allocate a buffer
automatically and return an integer called a picture ID that is
used in the other Pic subprograms.

The Pic.Draw procedure draws a picture in the window at a
specified location. When a picture is no longer needed, Pic.Free
must be called to free up the allocated buffer. If too many pictures
are allocated without being freed, a program can run out of
memory in which to store additional pictures.

The signatures for the Pic subprograms in the program that we
will show are:
• Pic.FileNew (fileName : string) : int

Opens a graphic file on disk and returns the picture ID.
• Pic.ScreenLoad (fileName : string, x, y, mode : int)

Opens a graphic file on disk and draws it in the window.
• Pic.New (x1, y1, x2, y2 : int) : int

Saves a rectangle with bottom left and top right corners
(x1, y1) and (x2, y2) and returns the picture ID.

• Pic.Draw (pictureID, x, y, mode : int)
Draws the picture specified by pictureID in the window with
lower left corner at (x, y).

• Pic.Free (pictureID : int)

388 Introduction to Programming in Turing

Frees up a picture’s buffer when the picture is no longer
needed.

Turing can load graphic files from disk. These graphic files
can be created using various types of paint programs. On the
Windows platform, Turing can load files that are stored in BMP
format. Such files have a file suffix of Ò.bmpÓ. On the Macintosh,
Turing can load files in PICT format. Graphics files in different
formats can be converted to either BMP files or PICT files using a
variety of freeware or shareware utilities.

The example program, MoveLogo, animates a small picture
over top of a larger background picture. The smaller picture (in
this case, a Turing logo) moves diagonally, bouncing off the
edges of the window. This program needs a small graphic saved
as logo.bmp and a larger background picture saved as
forest.bmp.

Figure 21.2 The Execution window from MoveLogo

% The "MoveLogo" program
% This program animates a graphic around the window.

var logoPicID, bgPicID : int

Chapter 21 : Animation and GUIs 389

% The picture IDs of the logo and the background
var logoWidth, logoHeight : int
% The width and height of the logo picture
var x, y : int := 0
% The lower-left corner of the logo
var dx, dy : int := 3
% The direction of movement of the logo

% Load the logo from file and get its height and width
logoPicID := Pic.FileNew ("logo.bmp")
logoWidth := Pic.Width (logoPicID)
logoHeight := Pic.Height (logoPicID)
% Load the forest picture from the file and draw it in the window
Pic.ScreenLoad ("forest.bmp", 0, 0, picCopy)

loop
% Take the picture of the background
bgPicID := Pic.New (x, y, x + logoWidth, y + logoHeight)
% Draw the logo
Pic.Draw (logoPicID, x, y, picMerge)
delay (50)
% Draw the background over the logo, effectively erasing the logo
Pic.Draw (bgPicID, x, y, picCopy)
% Free up the memory used by the background picture
Pic.Free (bgPicID)
% Check if the logo bounced off the left or right edges of the

window
if x + dx < 0 or x + dx + logoWidth > maxx then

dx := – dx
end if
% Check if the logo bounced off the top or bottom edges
if y + dy < 0 or y + dy + logoHeight > maxy then

dy := – dy
end if
% Change the location of the logo
x := x + dx
y := y + dy

end loop

After the variable declarations, the program loads in the logo
from a BMP file called logo.bmp and determines the height and

390 Introduction to Programming in Turing

width of the picture. Pic.FileNew loads the BMP picture from the
disk and stores it as a picture. The next two lines specify the
picture’s height and width. The program then loads the forest
image directly to a window using Pic.ScreenLoad. It does not save
the picture in memory.

The animation of the logo bouncing around the window occurs
in the main loop. With each iteration of the loop, the program
saves the part of the window where the logo will be drawn as a
picture using Pic.New. It then draws the logo using Pic.Draw over
the portion of the window that just had its picture taken. It delays
50 milliseconds and then draws the small background picture
over top of the logo using Pic.Draw again, erasing the logo. It then
frees up the memory used by the small background picture using
Pic.Free. Finally, it calculates the next location for the logo.

Note that when the picture is drawn over the background with
Pic.Draw, the picMerge mode is used. The picMerge mode has the
effect of not drawing the parts of the picture that are the
background color, which is usually white (see Figure 21.3). This is
very useful when drawing irregularly shaped objects over a
background. Instead of the picture being drawn in a white
rectangle, only the non-background pixels are drawn to the
window. When the background is redrawn in the second call to
Pic.Draw, the picCopy mode is used. This ensures that the original
background picture is restored.

Here is a small example of the two drawing modes.

Chapter 21 : Animation and GUIs 391

Background

Picture

Picture drawn
with picCopy

Picture drawn
with picMerge

Figure 21.3 The picCopy and picMerge drawing modes

21.3 Animation using the Sprite Module
Sprites are small graphical objects created to move around

the window. Turing supports the use of sprites with the Sprite
module. Sprites have two advantages over using the Pic module
in a Turing program.

The first advantage is that the background does not have to
be redrawn by the program. When a sprite is moved, the
background in the previous location is automatically restored.

392 Introduction to Programming in Turing

The second advantage is that sprites can be given a priority.
When two sprites are drawn over top of each other, the sprite
with the higher priority is automatically drawn over top of the
sprite with the lower priority. Any non-sprite drawing to the
window is considered to be at priority 0. Sprites with negative
priorities appear behind the background. That is, the sprite is
drawn only on the parts of the window that appear in color 0.

The subprograms used in the following example program are:

• Sprite.New (picture : int) : int
Creates a new sprite from a picture.

• Sprite.Show (sprite : int)
Displays the sprite at its current location and height.

• Sprite.SetPriority (sprite, height : int) : int
Sets the priority of the specified sprite.

• Sprite.SetPosition (sprite, x, y : int, centered : boolean)
Moves the sprite to a new location with lower-left corner at
(x, y). If centered is true, the sprite is centered at the
location instead.

Our first example program is called SpriteLogo, and is similar
to the MoveLogo program. The SpriteLogo program uses the
Sprite module to perform the animation instead of the Pic module.

% The "SpriteLogo" program
% This program animates a graphic around the window using
% sprites.

var logoPicID, spriteID : int
% The picture IDs of the logo and the background
var logoWidth, logoHeight : int
% The width and height of the logo picture
var x, y : int := 0 % The location of the logo
var dx, dy : int := 3 % The direction of movement of the logo

% Load the logo from file and get its height and width
logoPicID := Pic.FileNew ("logo.bmp")

Chapter 21 : Animation and GUIs 393

logoWidth := Pic.Width (logoPic)
logoHeight := Pic.Height (logoPic)

% Create the sprite
spriteID := Sprite.New (logoPicID)
Sprite.SetPriority (spriteID, 3)
Sprite.Show (spriteID)

% Load the forest picture from the file and draw it to the window
Pic.ScreenLoad ("forest.bmp", 0, 0, picCopy)

loop
Sprite.SetPosition (spriteID, x, y)
delay (50)
if x + dx < 0 or x + dx + logoWidth > maxx then

dx := – dx
end if
if y + dy < 0 or y + dy + logoHeight > maxy then

dy := – dy
end if
x := x + dx
y := y + dy

end loop

The initial few lines of SpriteLogo are identical to the
MoveLogo program. After the picture is created, the sprite is
created using Sprite.New with the picture as a parameter. This
returns an integer representing the sprite. After the sprite is
created, the priority of the sprite is set with Sprite.SetPriority. After
this, the sprite is made visible in its default location using
Sprite.Show.

In the loop, it is no longer necessary to store a small segment
of the background. The loop contains calls to Sprite.SetPosition to
move the sprite to a new location.

Sprites are especially useful when there are several to
animate at a time. For example, in the SpriteLogos program,
arrays are used to store the sprite number, location, and velocity
of several logos. Each logo is given a particular priority and will
always be drawn above any logo of a lower priority.

394 Introduction to Programming in Turing

This program uses the Rand.Int predefined function of the
Rand module. Rand.Int is very similar to randint in that it returns a
random integer between its two parameters except that it is a
function rather than a procedure. Almost all of the lowercase
subprograms have a module.subprogram equivalent.

Figure 21.4 The Execution window from SpriteLogos

% The "SpriteLogos" program
% This program animates a graphic around the window using sprites

var logoPicID, spriteID : int
% The picture IDs of the logo and the background
var logoWidth, logoHeight : int
% The width and height of the logo picture
var spriteID : array 1 .. 6 of int
var x, y : array 1 .. 6 of int
var dx, dy : array 1 .. 6 of int

% Load the logo from file and get its height and width
logoPicID := Pic.FileNew ("logo.bmp")
logoWidth := Pic.Width (logoPic)
logoHeight := Pic.Height (logoPic)

% Create the sprites

Chapter 21 : Animation and GUIs 395

for i : 1 .. 6
spriteID (i) := Sprite.New (logoPicID)
Sprite.SetPriority (spriteID (i), i)
Sprite.Show (spriteID (i))
x (i) := Rand.Int (logoWidth, maxx – logoWidth)
y (i) := Rand.Int (logoWidth, maxy – logoWidth)
dx (i) := Rand.Int (– 3, 3)
dy (i) := Rand.Int (– 3, 3)

end for

% Load the forest picture from the file and draw it to the window
Pic.ScreenLoad ("forest.bmp", 0, 0, picCopy)

loop
for i : 1 .. 6

Sprite.SetPosition (spriteID (i), x (i), y (i))
if x (i) + dx (i) < 0 or x (i) + dx (i) + logoWidth > maxx then

dx (i) := – dx (i)
end if
if y (i) + dy (i) < 0 or y (i) + dy (i) + logoHeight > maxy then

dy (i) := – dy (i)
end if
x (i) := x (i) + dx (i)
y (i) := y (i) + dy (i)

end for
delay (50)

end loop

21.4 The GUI Module
Most user interfaces include buttons, check boxes, scroll

bars, text boxes, and more. Such interfaces are known as GUIs
or Graphical User Interfaces. Individual components of a GUI
such as a button or a check box are often called widgets. Turing
includes a GUI module to help create programs that use widgets.
We will give three example programs using the GUI module in the
Turing library. For more information on all the GUI widgets
available in Turing, consult the Turing Reference Manual.

396 Introduction to Programming in Turing

Figure 21.5 Some Turing GUI Widgets

Unlike all the other predefined subprograms we have used so
far, the subprograms in the GUI module are not automatically
included in Turing programs. To make them available, the GUI
module must be imported explicitly with the line:

import GUI

This loads the GUI module in the Turing library.
Programs that use the GUI module have certain common

elements. When each widget is created, an action procedure is
specified. The action procedure is called when the widget is
activated. For example, a button has an action procedure that is
called when the user presses the button. A check box has an
action procedure that is called whenever the user switches the
check box from checked to unchecked or back again. A text box
has an action procedure that is called whenever the user enters
text in the box and presses Enter.

A program using the GUI module must have this program
segment in order to allow the widgets to respond to the user.

loop
exit when GUI.ProcessEvent

end loop

Each time through this loop, GUI.ProcessEvent is called to
check for user input and handle it appropriately. For example,
when the user clicks on a button, GUI.ProcessEvent draws the
pressed button. When the user releases the mouse,
GUI.ProcessEvent draws the original appearance of the button
and calls the action procedure. If a user enters a keystroke when

Chapter 21 : Animation and GUIs 397

a text field is active, GUI.ProcessEvent displays the key in the
text field.

GUI programs have a very different structure than the Turing
programs we have created so far. Rather than a loop containing
much of the program logic, GUI programs tend to create all the
widgets in the window and then use the GUI.ProcessEvent loop
to respond to the user interaction by calling various action
procedures. Individual mouse clicks, keystrokes, and so on are
often called events. This model of programming is called event-
driven programming and is common to most modern GUI
programs. The program segment containing the loop that
processes the user input is called the event loop.

We will now look at a GUI program called GUICircles. This
program uses two widgets, both buttons. When the user clicks on
the first button, the program draws a circle in a random location
with a random radius and color. When the user clicks the second
button, the program exits out of the event loop and terminates.

The new GUI subprograms we will use here are:
• GUI.CreateButton (x, y, width : int, text : string,

actionProc : procedure x ()) : int
Creates a button with lower-left corner at (x, y) with a width
of width. The button is labelled with text. The actionProc
parameter must be the name of a procedure without any
parameters. In the parameter declaration, the x is a place
holder and should be ignored. The empty brackets after
the x indicate that the action procedure has no
parameters.

• GUI.ProcessEvent : boolean
Handles any user interaction. Returns true until GUI.Quit
is called after which it returns false.

• GUI.Quit
Causes the next call to GUI.ProcessEvent to return false,
thus causing the event loop to exit. This procedure should
be called when the program is to terminate.

In the GUI.CreateButton call, the width parameter can be set
to 0, in which case the button’s width is scaled to fit the width of

398 Introduction to Programming in Turing

the label. In general, if there are several related buttons, they will
look best if they are all given the same width. For single buttons,
setting width to 0 allows the system to determine the appropriate
size of the button. The function returns an integer that can be
used to identify the widget, commonly called the widget ID. The
widget ID is passed as a parameter to various subprograms that
can show, hide, move. or dispose of the widget.

Note that the action procedure has no parameters. If the
program has several buttons pointing to the same action
procedure, the only way to determine which button was
responsible for calling the action procedure is using the
GUI.GetEventWidgetID function. The Turing Reference Manual
has more details about this and other subprograms.

For the sake of consistency, this program uses the
Draw.FillCircle procedure, which is the exact equivalent of the
drawfillcircle procedure.

Here is the GUICircles program which draws a circle each
time the user presses the ÒDraw CircleÓ button.

% The "GUICircles" program
import GUI

procedure DrawCircle
var x, y, r, clr : int
x := Rand.Int (0, maxx)
y := Rand.Int (70, maxy)
r := Rand.Int (20, 50)
clr := Rand.Int (1, maxcolor)
Draw.FillOval (x, y, r, r, clr)

end DrawCircle

var button : int := GUI.CreateButton (maxx div 2 – 30, 3, 60,
"Draw Circle", DrawCircle)

loop
exit when GUI.ProcessEvent

end loop

Chapter 21 : Animation and GUIs 399

Figure 21.6 The Execution window from GUICircles

We will now look at a more complicated GUI example that
uses widgets. The Convert program converts temperatures from
Fahrenheit to Celsius and back. The program contains two text
fields labeled Fahrenheit and Celsius for entering the
temperatures and two buttons for specifying the direction of the
conversion. The user can perform conversions by typing in the
temperature to be converted into the appropriate text field and
then, either pressing Enter or pressing the appropriate button.
The result of the conversion appears in the other text field.

Figure 21.7 The Execution window from Convert

400 Introduction to Programming in Turing

The Convert program contains six widgets: two buttons, two
text fields, and two labels. A label is a string that is generally used
to label other widgets. A text field is used for entering a single line
of data, in this case, the temperature to be converted.

Each of the buttons and the text fields has its own action
procedure. The action procedures for the Fahrenheit to Celsius
button and the Fahrenheit text field both convert the contents of
the Fahrenheit text field into a Celsius temperature.
Unfortunately, an action procedure for a button has no
parameters and the action procedure for a text field has a string
as a parameter, so we need to create two separate action
procedures. The text field’s action procedure
(FahrenheitToCelsius1), however, simply calls the button’s action
procedure (FahrenheitToCelsius).

The actual Fahrenheit to Celsius conversion occurs as
follows:
• The contents of the Fahrenheit text field is read into a string

using GUI.GetText.
• The program checks whether a valid conversion of the string

to a number can be done using strintok and which returns true
if the string can be converted.

• If it can be safely converted, the string is converted into a
number.

• The number is then converted into a Celsius temperature
using the regular temperature conversion formula.

• Finally, the number is converted back to a string using strint
and the string is passed as a parameter to GUI.SetText which
sets the contents of the Celsius text field to the string.

The action procedures and the procedures for conversion
from Celsius to Fahrenheit are essentially the same.

There are a few extra aspects of the program. Near the
beginning of the program is the line

View.Set ("graphics:280;70")

This resizes the current window to the specified size. The next
statement

Chapter 21 : Animation and GUIs 401

Window.Set (defWinId, "title:Temperature Converter")

changes the title of the output window to ÒTemperature
ConverterÓ. Near the end of the program is the statement

GUI.SetBackgroundColor ("gray")

This procedure sets the background color of the window in which
the widgets appear to gray. This is necessary if any of the
widgets (such as the text fields) are to have a 3-D appearance.
The color gray is the traditional color for dialog boxes.

The two text fields are created using GUI.CreateTextFieldFull.
The CreateÉFull procedures allow for more variables relating to
the widget being created to be specified. In this case, we want to
specify the type of border around the text field in order to give the
text field a 3-D appearance. The default value is for the text field
to have a simple rectangular box around it. The GUI.INDENT
parameter specifies the widget to have an indented border.

To place the labels in the correct position above the text
fields, they are created with GUI.CreateLabelFull. The
GUI.CENTER parameter specifies that the label be placed in the
center of a box with the same left side and width as the text field.
This ensures that the label is centered over the text field.

402 Introduction to Programming in Turing

Figure 21.8 Positioning the labels above the text field

Here is the Convert program.

% The "Convert" program
import GUI

View.Set ("graphics:280;70")
Window.Set (defWinId, "title:Temperature Converter")

var celsiusTextField, fahrenheitTextField : int

procedure CelsiusToFahrenheit
var celsius : string := GUI.GetText (celsiusTextField)
if strintok (celsius) then

var fahrenheit : int := round (strint (celsius) * 9 / 5 + 32)
GUI.SetText (fahrenheitTextField, intstr (fahrenheit))

end if
end CelsiusToFahrenheit

procedure CelsiusToFahrenheit1 (dummy : string)
CelsiusToFahrenheit

end CelsiusToFahrenheit1

Chapter 21 : Animation and GUIs 403

procedure FahrenheitToCelsius
var fahrenheit : string := GUI.GetText (fahrenheitTextField)
if strintok (fahrenheit) then

var celsius : int := round ((strint (fahrenheit) – 32) * 5 / 9)
GUI.SetText (celsiusTextField, intstr (celsius))

end if
end FahrenheitToCelsius

procedure FahrenheitToCelsius1 (dummy : string)
FahrenheitToCelsius

end FahrenheitToCelsius1

% Create a text field for the celsius reading
celsiusTextField := GUI.CreateTextFieldFull (15, 20, 50, "",

CelsiusToFahrenheit1, GUI.INDENT, 0, 0)

% Create a label for the celsius field
var d1 : int := GUI.CreateLabelFull (15, 20 +

GUI.GetHeight (celsiusTextField),
"Celsius", 50, 0, GUI.CENTER, 0)

% Create a text field for the fahrenheight reading
fahrenheitTextField := GUI.CreateTextFieldFull (215, 20, 50, "",

FahrenheitToCelsius1, GUI.INDENT, 0, 0)

% Create a label for the fahrenheit field
var d2 : int := GUI.CreateLabelFull (215, 20 +

GUI.GetHeight (celsiusTextField),
"Fahrenheit", 50, 0, GUI.CENTER, 0)

% Create the button to convert from celsius to fahrenheit
var toFahrenheit : int := GUI.CreateButton (100, 33, 80, "Convert ->",

CelsiusToFahrenheit)

% Create the button to convert from fahrenheit to celsius
var toCelsius : int := GUI.CreateButton (100, 3, 80, "<- Convert",

FahrenheitToCelsius)

GUI.SetBackgroundColour (gray)

loop
exit when GUI.ProcessEvent

404 Introduction to Programming in Turing

end loop

21.5 Playing Music from Sound Files
Turing has the ability to play music from a sound file. (At the

time of writing, this feature only exists under Windows. Check the
on-line help for the Macintosh version of Turing to determine if
the feature is available.)

To play sound and music on a PC requires a sound card and
speakers. The internal speaker of a PC (the speaker that makes
the initial beep when the machine is turned on) is not sufficient for
playing music.

Turing uses two predefined subprograms for playing music.

Music.PlayFile (filename : string)
Music.PlayFileStop

The Music.PlayFile procedure loads the music file specified
and starts playing it. The music file can be one of the following
formats:

• a WAV file, in which case the file name ends with Ò.wavÓ,
• a MIDI file, in which case the file name ends with Ò.midÓ,
• a CD, in which case the file name is simply ÒcdÓ, or
• a CD track, in which case the file name is simply

Òcd:<number>Ó where <number> is the track number to be
played. For example Òcd:3Ó plays the third track on the CD.

Execution halts while playing a music file. This means that if
you want music to play simultaneously with animation, you must
use a technique that lets multiple parts of the program execute at
the same time. This ability is called concurrency and in Turing is
accomplished using processes. Concurrency is a very advanced
topic and beyond the scope of this book. We will only provide
enough of an introduction to allow the use of processes to play
music.

Chapter 21 : Animation and GUIs 405

In Turing, a process is like a procedure except a process is
called using the fork statement. When the fork statement is
called, the process starts execution, but unlike a procedure,
execution also continues after the fork statement at the same
time as the process is executing. Thus the process and the rest
of the program are executing simultaneously. Like procedures,
processes can have arguments.

To play a music file at the same time as performing other
tasks, place the call to Music.PlayFile in a process and fork the
process when the music is to be played.

process PlayMusic
Music.PlayFile ("sonata.mid")

end PlayMusic

…
fork PlayMusic
…

To play a piece of music continuously, place the Music.PlayFile
statement in a loop. Windows has the ability to play a MIDI file
and a WAV file at the same time. This means that a MIDI file can
be used for background music and a WAV file used for sound
effects.

Playing a second WAV file before the first WAV file has
completed terminates the first sound immediately.

In Turing, a program does not terminate while any processes
are still executing. This means that to have a program that is
playing background music in a loop terminate properly, a method
for finishing the process must be added. This can be done by
adding a global variable to specify when the program is to
terminate. This global variable is checked each time through the
loop in the process. When the program is to terminate, the global
variable is set and then the Music.PlayFileStop procedure is called.
This causes the music to stop and all Music.PlayFile statements to
return immediately. Without it, the music might play for several
more minutes before finishing and then exiting the loop.

var finished : boolean := false
…

406 Introduction to Programming in Turing

process PlayMusic
loop

Music.PlayFile ("sonata.mid")
exit when finished

end loop
end PlayMusic

…
fork PlayMusic
…
% Quit playing music
finished := true
Music.PlayFileStop

The MoveLogoWithMusic program uses the Pic example but
modifies it to play background music continuously and produce a
sound effect every time the logo hits a wall. As well, the program
terminates when a key is pressed.

Note that the sound effect is a WAV file and the background
music is a MIDI file.

% The "MoveLogoWithMusic" program
% This program animates a graphic around the window

var logoPicID, bgPicID : int % The picture Ids of the logo and the
bkgrnd
var logoWidth, logoHeight : int % The width and height of the logo
picture
var x, y : int := 0 % The location of the logo
var dx, dy : int := 3 % The direction of movement of the logo
var finished : boolean := false % Set to true when program finished

% Process to continuously play background music
process PlayBackgroundMusic (filename : string)

loop
exit when finished
Music.PlayFile (filename)

end loop
end PlayBackgroundMusic

Chapter 21 : Animation and GUIs 407

% Process to play a sound file once
process PlaySoundEffect (filename : string)

Music.PlayFile (filename)
end PlaySoundEffect

% Load the logo from file and get its height and width
logoPicID := Pic.FileNew ("logo.bmp")
logoWidth := Pic.Width (logoPic)
logoHeight := Pic.Height (logoPic)

% Load the forest picture from the file and draw it to the window
Pic.ScreenLoad ("forest.bmp", 0, 0, picCopy)

% Start the background music
fork PlayBackgroundMusic ("canyon.mid")

loop
exit when hasch
bgPicID := Pic.New (x, y, x + logoWidth, y + logoHeight)
Pic.Draw (logoPicID, x, y, picMerge)
delay (50)
Pic.Draw (bgPicID, x, y, picCopy)
Pic.Free (bgPicID)
if x + dx < 0 or x + dx + logoWidth > maxx then

fork PlaySoundEffect ("boing.wav")
dx := – dx

end if
if y + dy < 0 or y + dy + logoHeight > maxy then

fork PlaySoundEffect ("boing.wav")
dy := – dy

end if
x := x + dx
y := y + dy

end loop

finished := true
Music.PlayFileStop

408 Introduction to Programming in Turing

21.6 Exercises
1. Write a program using mousewhere that draws a continuous

line made up of a series of line segments. The program
should add to the line whenever the mouse button is pressed
adding a line segment from the end of the line to the current
mouse location. Decide how to handle the first time the mouse
button is pressed.

2. Write a program using buttonmoved that allows the user to
draw rectangles. The user draws a rectangle by clicking the
mouse for one corner and then clicking the mouse a second
time to specify the opposite corner. Draw a dot when the first
corner is specified and draw the rectangle when the second
corner is specified.

3. Using the mouse subprograms, write a program to allow the
user to draw filled rectangles in a random color by clicking in
the window to specify one corner of the rectangle, dragging
the mouse to the desired diagonally opposite corner, and
releasing the mouse button. While the mouse is being
dragged, draw an outline of the rectangle to indicate its
current size, then draw a filled rectangle when the mouse
button is released.

4. Modify the MoveLogo program so that instead of moving a
Turing logo loaded from disk, it moves a small graphic created
with Turing Draw... commands.

5. Write a program that animates two logos around the screen.
Whenever the two logos would overlap, move one of the logos
to a random, non-overlapping location.

6. Using sprites, write a program that draws a simple city scene
and then moves cars, trucks and airplanes across the scene.

7. Create a ÒGuess my numberÓ program. The program should
have five buttons numbered 1 through 4 and Quit. The
program should choose a random number from 1 to 4. Each
time the user selects a button, the program should display a
message telling the user whether the guess was accurate and
choose a new number.

Chapter 21 : Animation and GUIs 409

8. [Project] Write a program that uses GUI buttons and a text
field to simulate a calculator. The calculator should have
buttons from each of the 10 digits, a button for plus, minus,
multiply, and divide, and a button for equals. It should display
the user’s entered number in the text field as well as the
output from the calculation.

21.7 Technical Terms
mousewhere

buttonmoved

buttonwait

Pic module
picture ID
Pic.FileNew

Pic.New

Pic.ScreenLoad

Pic.Draw

Pic.Free

BMP file
PICT file
picMerge

picCopy

priority
Sprite.New

Sprite.Show

Sprite.SetPriority

Sprite.SetPosition

sprite
buttons
check boxes
scroll bars
text boxes

GUI
Graphical User Interfaces
components
widgets
action procedure
event
event-driven

programming
event loop

410 Introduction to Programming in Turing

GUI.CreateButton
GUI.ProcessEvent
GUI.Quit
widget ID
WAV file
MIDI file
Music.PlayFile

Music.PlayFileStop

concurrency
process
fork

411

Appendices

A Simplified Turing Syntax

B Predefined Subprograms

C Predefined Subprograms by Module

D Reserved Words

E Operators

F File Statements

G Control Constructs

H Colors in Turing

I Keyboard Codes for IBM PC

J ASCII Character Set

K Glossary

For more information, consult the Turing Reference Manual
available from Holt Software. More information can also be found
at http://www.holtsoft.com/turing.

412 Introduction to Programming in Turing

Appendix A : Simplified Turing Syntax
To describe any language you must know its grammar or
syntax. The following is a simplified version of the syntax of
the Turing programming language. For a full Turing syntax
see the textbook Introduction to Computer Science using the
Turing Programming Language by J.N.P. Hume and R.C. Holt
published by Holt Software Inc.
The syntax given here has been simplified in several ways. A
number of the advanced features of the Turing language have
not been discussed in this book. These have been omitted
from this syntax. The syntax description given here is a formal
description and many seem somewhat strange to you. But
here it is:

• Turing programs are constructed by applying the production
rules given here.

• Each production rule defines a syntactic variable such as a
program in terms of other syntactic variables and strings of
characters (tokens) that will ultimately form part of the Turing
program.

• For example, the first production rule listed is
A program is:

{declarationOrStatementInMainProgram}

The syntactic variable program is defined in terms of
declarationOrStatementInMainProgram which is another
syntactic variable. Around this variable’s name are curly
braces which mean that this variable can occur zero or more
times in a program.

• To produce a Turing program we begin by looking at the
production rule for declarationOrStatementInMainProgram
and substitute for it.

• When you have a rule which produces a word in boldface type
you have produced part of the final program and no more

Appendix A : Simplified Turing Syntax 413

production rules can be applied to that part. It is a terminal
token.

• The syntactic variables are called non-terminals and you must
continue to replace them by their definition.

• In these syntax rules all the terminals are keywords in the
Turing language.

• In a program you must replace the syntactic variable id, which
stands for identifier, by a word you invent which follows the
rules for identifiers listed under ñIdentifiers and Explicit
Constantsîgiven at the end of the syntax. Such words are
terminal tokens but are not keywords in the language.

• In production rules anything enclosed in square brackets [] is
optional. Anything in curly braces { } can occur zero or more
times. To summarize:

[item] means that item is optional, and
{item} means that item can occur zero or more times.

Programs and Declarations

A program is:
{declarationOrStatementInMainProgram}

A declarationOrStatementInMainProgram is one of:
a. declaration
b. statement
c. subprogramDeclaration

A declaration is one of the following:
a. constantDeclaration
b. variableDeclaration
c. typeDeclaration

A constantDeclaration is one of:
a. const id := expn
b. const id [: typeSpec]:= initializingValue

An initializingValue is one of:

414 Introduction to Programming in Turing

a. expn
b. init (initializingValue {, initializingValue})

A variableDeclaration is one of:
a. var id {, id } := expn
b. var id {, id } : typeSpec [:= initializingValue]

Types

A typeDeclaration is:
type id : typeSpec

A typeSpec is one of the following:
a. standardType
b. subrangeType
c. arrayType
d. recordType
e. namedType

A standardType is one of:
a. int
b. real
c. boolean
d. string [(compileTimeExpn)]

A subrangeType is:
compileTimeExpn .. expn

An arrayType is:
array indexType {, indexType } of typeSpec

An indexType is one of:
a. subrangeType
b. namedType

A recordType is:
record

id {, id } : typeSpec
{id {, id } : typeSpec }

end record

Appendix A : Simplified Turing Syntax 415

A namedType is:
id

Subprograms

A subprogramDeclaration is:
subprogramHeader
subprogramBody

A subprogramHeader is one of:
a. procedure id [(parameterDeclaration

{, parameterDeclaration })]
b. function id [(parameterDeclaration

{, parameterDeclaration })] : typeSpec

A parameterDeclaration is:
[var] id {, id } : parameterType

A parameterType is one of:
a. typeSpec
b. string (*)
c. array compileTimeExpn .. * {, compileTimeExpn ..*}

 of typeSpec
d. array compileTimeExpn .. * {, compileTimeExpn .. * }

 of string (*)

A subprogramBody is:
declarationsAndStatements

end id

Statements and Input/Output

DeclarationsAndStatements is:
{declarationOrStatement }

A declarationOrStatement is one of:
a. declaration
b. statement

416 Introduction to Programming in Turing

A statement is one of the following:
a. variableReference := expn
b. procedureCall
c. assert booleanExpn
d. result expn
e. ifStatement
f. loopStatement
g. exit [when booleanExpn]
h. caseStatement
i. forStatement
j. putStatement
k. getStatement
l. openStatement
m. closeStatement

A procedureCall is a:
reference

An ifStatement is:
if booleanExpn then

declarationsAndStatements
{elsif booleanExpn then

declarationsAndStatements }
[else

declarationsAndStatements]
end if

A loopStatement is:
loop

declarationsAndStatements
end loop

A caseStatement is:
case expn of

label compileTimeExpn {, compileTimeExpn } :
declarationsAndStatements

{label compileTimeExpn {, compileTimeExpn } :
declarationsAndStatements}

Appendix A : Simplified Turing Syntax 417

[label : declarationsAndStatements]
end case

A forStatement is one of:
a. for id : expn .. expn [by expn]

declarationsAndStatements
end for

b. for decreasing id : expn .. expn [by expn]
 declarationsAndStatements

end for
The id may be omitted but is then not accessible.

A putStatement is:
put [: streamNumber ,] putItem {, putItem } [..]

A putItem is one of:
a. expn [: widthExpn [: fractionWidth [: exponentWidth]]]
b. skip

A getStatement is:
get [: streamNumber ,] getItem {, getItem }

A getItem is one of:
a. variableReference
b. skip
c. variableReference : *
d. variableReference : widthExpn

An openStatement is:
open: fileNumberVariable, fileName,

 capability {, capability }

A capability is one of:
a. get
b. put

A closeStatement is:
close: fileNumber

A streamNumber, widthExpn, fractionWidth, exponentWidth , or

418 Introduction to Programming in Turing

fileNumber is an:
expn

References and Expressions

A variableReference is a:
reference

A reference is one of:
a. id
b. reference componentSelector

A componentSelector is one of:
a. (expn {, expn })
b. . id

A booleanExpn or compileTimeExpn is an:
expn

An expn is one of the following:
a. reference
b. explicitConstant
c. substring
d. expn infixOperator expn
e. prefixOperator expn
f. (expn)

An explicitConstant is one of:
a. explicitUnsignedIntegerConstant
b. explicitUnsignedRealConstant
c. explicitStringConstant
d. true
e. false

An infixOperator is one of:
a. + (integer and real addition; string concatenation)
b. – (integer and real subtraction)
c. * (integer and real multiplication)
d. / (real division)

Appendix A : Simplified Turing Syntax 419

e. div (truncating integer division)
f. mod (integer remainder)
g. ** (integer and real exponentation)
h. < (less than)
i. > (greater than)
j. = (equal to)
k. <= (less than or equal to)
l. >= (greater than or equal to)
m. not= (not equal)
n. and (boolean and)
o. or (boolean inclusive or)

A prefixOperator is one of:
a. + (integer and real identity)
b. – (integer and real negation)
c. not (boolean negation)

All infix operators (including **) associate left-to-right. The
precedence of all the operators is as follows, in decreasing order
of precedence (tightest binding to loosest binding):

1. **
2. prefix +, –
3. *, /, div, mod
4. infix +,–
5. <, >, =, <=, >=, not=
6. not
7. and
8. or

A substring is:
reference (substringPosition [.. substringPosition])

A substringPosition is one of:
a. expn
b. * [– expn]

420 Introduction to Programming in Turing

Identifiers and Explicit Constants

An identifier consists of a sequence of at most 50 letters,
digits, and underscores beginning with a letter. All these
characters are significant in distinguishing identifiers. Upper and
lower case letters are considered to be distinct in identifiers and
keywords; hence j and J are different identifiers. The keywords
must be in lower case. Keywords and predefined identifiers must
not be redeclared (they are reserved words).

An explicit string constant is a sequence of zero or more
characters surrounded by double quotes. Within explicit string
constants, the back slash character (\) is an escape to represent
certain characters as follows: \" for double quote, \n or \N for end
of line character, \t or \T for tab, \f or \F for form feed, \r or \R for
return, \b or \B for backspace, \e or \E for escape, \d or \D for
delete, and \\ for back slash. Explicit string constants must not
cross line boundaries.

Character values are ordered by the ASCII collating
sequence.

An explicit integer constant is a sequence of one or more
decimal digits, optionally preceded by a plus or minus sign.

An explicit real constant consists of three parts: an optional
plus or minus sign, a significant figures part, and an exponent
part. The significant figures part consists of a sequence of one or
more digits optionally containing a decimal point. The exponent
part consists of the letter e (or E) followed optionally by a plus or
minus sign followed by one or more digits. If the significant
figures part contains a decimal point then the exponent part is
optional. The following are examples of explicit real constants.

2.0 0. .1 2e4 56.1e+27
An explicit integer or real constant that begins with a sign is

called a signed constant; without the sign, it is called an unsigned
constant.

The explicit boolean constants are true and false.

Appendix B : Predefined Subprograms 421

Appendix B : Predefined Subprograms

Predefined Functions

eof (i : int): boolean
Accepts a non-negative stream number (see description of
get and put statements) and returns true if, and only if, there
are no more characters in the stream. This function must not
be applied to streams that are being written to (via put). The
parameter and parentheses can be omitted, in which case it is
taken to be the default input stream.

length (s : string): int
Returns the number of characters in the string. The string
must be initialized.

index (s , patt : string): int
If there exists an i such that s(i .. i + length(patt) 1) = patt,
then the smallest such i is returned, otherwise zero is
returned. Note that 1 is returned if patt is the null string.

repeat (s : string, i : int): string
If i > 0, returns i copies of s joined together, else returns the
null string. Note that if j 0, length(repeat(t, j)) = j * length(t).

hasch : boolean
Value is true if single character has been read by procedure
getch.

playdone : boolean
Value is true if the execution of the preceding play procedure
is finished.

whatcolor : int
Value is the current color number in which characters will be
displayed in pixel graphics.

whatcolorback : int
Value is the current background color number in pixel
graphics.

422 Introduction to Programming in Turing

maxx : int
Maximum value of x in current pixel graphics mode. For CGA,
maxx = 319.

maxy : int
Maximum value of y in current pixel graphics mode. For CGA,
maxy = 199.

maxcolor : int
Value is the maximum color number in current pixel (or
character) graphics mode. For CGA graphics, maxcolor = 3.
For character graphics, maxcolor = 15.

Mathematical Functions

abs (expn)
Accepts an integer or real value and returns the absolute
value. The type of the result is int if the expn is of root type
int; otherwise it is real.

max (expn , expn)
Accepts two numeric (real or integer) values and returns their
maximum. If both are of root type int, the result is an int;
otherwise it is real.

min (expn, expn)
Accepts two numeric (real or integer) values and returns their
minimum. If both are of root type int, the result is an int;
otherwise it is real.

sign (r : real): –1 .. 1
Returns 1 if r < 0, 0 if r = 0, and 1 if r > 0.

sqrt (r : real): real
Returns the positive square root of r, where r is a non-
negative value.

sin (r : real): real
Returns the sine of r, where r is an angle expressed in
radians.

cos (r : real): real

Appendix B : Predefined Subprograms 423

Returns the cosine of r, where r is an angle expressed in
radians.

arctan (r : real): real
Returns the arctangent (in radians) of r.

sind (r : real): real
Returns the sine of r, where r is an angle expressed in
degrees.

cosd (r : real): real
Returns the cosine of r, where r is an angle expressed in
degrees.

arctand (r : real): real
Returns the arctangent (in degrees) of r.

ln (r : real): real
Returns the natural logarithm (base e) of r.

exp (r : real): real
Returns the natural base e raised to the power r.

Type Transfer Functions

floor (r : real): int
Returns the largest integer less than or equal to r.

ceil (r : real): int
Returns the smallest integer greater than or equal to r.

round (r : real): int
Returns the nearest integer approximation to r. Rounds to
larger value in case of tie.

intreal (i : int): real
Returns the real value corresponding to i. No precision is lost
in the conversion, so floor(intreal(j)) = ceil(intreal(j)) = j. To
guarantee that these equalities hold, an implementation may
limit the range of i.

chr (i : int): string (1)
Returns a string of length 1. The i-th character of the ASCII
sequence is returned, where the first character corresponds to
0, the second to 1, etc. See ASCII code for characters. The

424 Introduction to Programming in Turing

selected character must not be uninitchar (a reserved
character used to mark uninitialized strings) or eos (a
reserved character used to mark the end of a string).

ord (expn)
Accepts a string of length 1 and returns the position of the
character in the ASCII sequence.

intstr (i, width : int): string
Returns a string equivalent to an integer i, padded on the left
with blanks as necessary to a length of width; for example,
intstr (14,4) = "bb14" where b represents a blank. The width
parameter is optional. If it is omitted, it is taken to be 1. The
width parameter must be non-negative. If width is not large
enough to represent the value of i, the length is automatically
increased as needed. The string returned by intstr is of the
form:

{blank}[]digit{digits}

The leftmost digit is non-zero, or else there is a single zero
digit.

strint (s : string): int
Returns the integer equivalent to string s. String s must
consist of a possibly null sequence of blanks, then an optional
plus or minus sign, and finally a sequence of one or more
digits. Note that for integer i, and for non-negative w,
strint(intstr(i, w)) = i.

strintok (s : string): boolean
Returns true if string s can be successfully converted to an
integer using strint. This function can be used to test user
input before calling strint, avoiding a run-time error if the user
entered non-integer input.

erealstr (r : real,width, fractionWidth, exponentWidth : int): string
Returns a string (including exponent) approximating r, padded
on the left with blanks as necessary to a length of width; for
example, erealstr(2.5e1,9,2,2) = "b2.50e+01" where b
represents a blank. The width must be non-negative int value.
If the width parameter is not large enough to represent the
value of r, it is implicitly increased as needed. The

Appendix B : Predefined Subprograms 425

fractionWidth parameter is the non-negative number of
fractional digits to be displayed. The displayed value is
rounded to the nearest decimal equivalent with this accuracy,
with ties rounded to the next larger value. The exponentWidth
parameter must be non-negative and gives the number of
exponent digits to be displayed. If exponentWidth is not large
enough to represent the exponent, more space is used as
needed. The string returned by erealstr is of the form:

{blank}[]digit,{digit}e sign digit {digit}

where ñsignî is a plus or minus sign. The leftmost digit is non-
zero, unless all the digits are zeroes.

frealstr (r : real, width, fractionWidth: int): string
Returns a string approximating r, padded on the left with
blanks if necessary to a length of width. The number of digits
of fraction to be displayed is given by fractionWidth; for
example, frealstr(2.5e1,5,1) = "b25.0" where b represents a
blank. The width must be non-negative. If the width parameter
is not large enough to represent the value of r, it is implicitly
increased as needed. The fractionWidth must be non-
negative. The displayed value is rounded to the nearest
decimal equivalent with this accuracy, with ties rounded to the
next larger value. The result string is of the form:

{blank} [] digit{digit}.{digit}

If the leftmost digit is zero, then it is the only digit to the left of
the decimal point.

realstr (r : real, width : int): string
Returns a string approximating r, padded on the left with
blanks if necessary to a length of width, for example,
realstr(2.5e1,4) = "bb25" where b represents blank. The width
parameter must be non-negative. If the width parameter is not
large enough to represent the value of r, it is implicitly
increased as needed. The displayed value is rounded to the
nearest decimal equivalent with this accuracy, with ties
rounded to the next larger value. The string realstr(r, width) is
the same as the string frealstr(r, width, defaultfw) when r = 0
or when 1e –3 ? abs(r) < 1e 6, otherwise the same as

426 Introduction to Programming in Turing

erealstr(r, width, defaultfw, defaultew), with the following
exceptions. With realstr, trailing fraction zeroes are omitted
and if the entire fraction is zero, the decimal point is omitted.
(These omissions take place even if the exponent part is
output.) If an exponent is output, any plus sign and leading
zeroes are omitted. Thus, whole number values are in general
displayed as integers. Defaultfw is an implementation defined
number of fractional digits to be displayed; for most
implementations, defaultfw will be 6. Defaultew is an
implementation defined number of exponent digits to be
displayed; for most implementations, defaultew will be 2.

strreal (s : string): real
Returns a real approximation to string s. String s must consist
of a possibly null sequence of blanks, then an optional plus or
minus sign and finally an explicit unsigned real or integer
constant.

Predefined Procedures

rand (var r : real)
Sets r to the next value of a sequence of pseudo random real
numbers that approximates a uniform distribution over the
range 0 < r < 1.

randint (var i : int, low, high : int)
Sets i to the next value of a sequence of pseudo random
integers that approximate a uniform distribution over the range
low ? i and i ? high. It is required that low ? high.

Graphics Procedures

locate (row, column: int)
Places the cursor at the point whose screen coordinates are
(row, column).

cls

Appendix B : Predefined Subprograms 427

Clears the screen and places cursor at point whose screen
coordinates are (1, 1). In pixel graphics mode, clears the
screen and changes screen to current background color.

color (colorNumber: int)
Sets color for text to be displayed.

colorback (colorNumber: int)
Sets color of the background on which text is to be displayed.

getch (var character: string(1))
Reads a single character from the keyboard.

play (music: string)
Plays notes according to the music. See details in music
chapter.

setscreen (s : string)
Changes to mode designated by string s. If s is "graphics"
changes to graphics mode. If s is "text" changes to text mode
which does not allow graphics.

colorback (colorNumber : int)
Sets current background color of text displayed. The default
background color is white.

drawdot (x, y, color : int)
Sets a dot (pixel) of color at point (x, y).

drawline (x1, y1, x2, y2, color : int)
Draws a line in color from (x1, y1) to (x2, y2).

drawbox (x1, y1, x2, y2, color : int)
Draws a rectangle in color with sides parallel to the axes,
bottom left corner at (x1, y1), and upper right corner at (x2,
y2).

drawfillbox (x1, y1, x2, y2, color : int)
Draws a filled in rectangle in color with sides parallel to the
axes, bottom left corner at (x1, y1), and upper right corner at
(x2, y2).

drawoval (xCenter, yCenter, xRadius, yRadius, color : int)
Draws an oval in color with center at (xCenter, yCenter),
horizontal distance to oval xRadius, vertical distance yRadius.

drawfilloval (xCenter, yCenter, xRadius, yRadius, color : int)

428 Introduction to Programming in Turing

Draws a filled in oval in color with center at (xCenter,
yCenter), horizontal distance to oval xRadius, vertical distance
yRadius.

drawarc (xCenter, yCenter, xRadius, yRadius : int,
initialAngle, finalAngle, color : int)

Draws a part of an oval whose specifications are given (as in
drawoval) between two lines from the center that make angles
in degrees: initialAngle and finalAngle , as measured
counterclockwise from the three o’clock position as zero.

drawfillarc (xCenter, yCenter, xRadius, yRadius : int,
initialAngle, finalAngle, color : int)

Draws a filled in ñpiece of pieî shaped wedge whose
specifications are given (as in drawoval) between two lines
from the center that make angles in degrees: initialAngle and
finalAngle, as measured counterclockwise from the three
o’clock position as zero.

drawfill (xInside, yInside, fillColor, borderColor : int)
Starting from a point (xInside, yInside) fills an area
surrounded by borderColor with fillColor .

locatexy (x, y : int)
Changes the cursor position in pixel graphics (the cursor is not
visible) to be in the nearest character position to point (x, y).

delay (duration : int)
Causes a delay of length duration milliseconds. A delay of
duration 500 is half a second.

sound (frequency, duration : int)
Emits a sound of any frequency (cycles per second) for
duration in milliseconds.

Appendix C : Predefined Subprograms by Module 429

Appendix C : Predefined Subprograms by
Module

This is the list of predefined modules available as part of
Turing. Their names cannot be used as identifiers. This list may
change with new releases of Turing.

Modules
Brush*
CheckBox*
Comm*
Concurrency
Config
ConfigNo
Dir
Draw
DropBox*
EditBox*
Errno
Error
Event
Exceptions
File
Font

GUI
Input
Keyboard
Limits
ListBox*
Math
Menu*
Mouse
Music
Network*
Obsolete
PC
Pen*
Pic
Print*
RadioButton*

Rand
RGB
Sound*
Sprite
Str
Stream
Student
Sys
Text
Time
Typeconv
Video*
View
Window

* = Module name reserved for future use

430 Introduction to Programming in Turing

Descriptions

This is the list of exported subprograms available for use in
each module, along with a short description. Subprograms listed
without the module name are exported unqualified and can be
called using just the subprogram name. All others must use the
module name in the call to the subprogram. For complete details
on any subprogram consult the Turing Reference Manual.

Concurrency
empty (variableReference : condition) : boolean

Return true if no processes are waiting on the condition queue.
getpriority : nat

Return the priority of the current process.
setpriority (p : nat)

Set the priority of the current process.
simutime : int

Return the number of simulated time units that have passed.

Config
Config.Display (displayCode : int) : int

Return information about display attached to computer.
Config.Lang (langCode : int) : int

Return information about the language and implementation limitations.
Config.Machine (machineCode : int) : int

Return information about the computer on which the program is running.

Appendix C : Predefined Subprograms by Module 431

Dir

Getting Directory Listings
Dir.Open (pathName : string) : int

Open a directory stream in order to get a listing of the directory contents.
Dir.GetLong (stream : int) : string

Return the next file name in the directory listing.
Dir.GetLong (stream : int, var entryName : string, var size, attribute, fileTime : int)

Get the next file name in the directory listing along with the file size, attributes,
and the last modification time of the file.

Dir.Close (stream : int)
Close the directory stream.

Disk Directory Manipulation
Dir.Create (pathName : string)

Create a directory.
Dir.Delete (pathName : string)

Delete a directory.

Execution Directory Manipulation
Dir.Change (pathName : string)

Change the current execution directory.
Dir.Current : string

Return the current execution directory.

Draw
Draw.Arc (x, y, xRadius, yRadius, initialAngle, finalAngle, clr : int)

Draw an arc on screen centered at (x, y).
Draw.Box (x1, y1, x2, y2, clr : int)

Draw a box on screen.
Draw.Cls

Clear the screen.
Draw.Dot (x, y, clr : int)

Draw a dot on screen at (x, y).
Draw.Fill (x, y, fillColor, borderColor : int)

Fill in a figure of color borderColor.

432 Introduction to Programming in Turing

Draw (cont...)

Draw.FillArc (x, y, xRadius, yRadius, initialAngle, finalAngle, clr : int)
Draw a filled pie-shaped wedge on screen centered at (x, y).

Draw.FillBox (x1, y1, x2, y2, clr : int)
Draw a filled box on the screen.

Draw.FillMapleLeaf (x1, y1, x2, y2, clr : int)
Draw a filled maple leaf on the screen.

Draw.FillOval (x, y, xRadius, yRadius, clr : int)
Draw a filled oval on screen centered at (x, y).

Draw.FillPolygon (x, y : array 1 .. * of int, n : int, clr : int)
Draw a filled polygon on the screen.

Draw.FillStar (x1, y1, x2, y2, clr : int)
Draw a filled star on the screen.

Draw.Line (x1, y1, x2, y2, clr : int)
Draw a line on the screen.

Draw.MapleLeaf (x1, y1, x2, y2, clr : int)
Draw a maple leaf on screen.

Draw.Oval (x, y, xRadius, yRadius, clr : int)
Draw an oval on screen centered at (x, y).

Draw.Polygon (x, y : array 1 .. * of int, n : int, clr : int)
Draw a polygon on the screen.

Draw.Star (x1, y1, x2, y2, clr : int)
Draw a star on the screen.

Error

Error.Last : int
Return the (integer) error code from the last subprogram call.

Error.LastMsg : string
Return the error message from the last subprogram call.

Error.LastStr : string
Return the constant name for the error code from the last subprogram call.

Error.Msg (errorCode : int) : string
Return the error message corresponding to the error code.

Error.Str (errorCode : int) : string
Return the constant name corresponding to the error code.

Appendix C : Predefined Subprograms by Module 433

Error.Trip (errorCode : int)
Abort execution with the specified error code.

File
File.Status (pathName : string, var size, attribute, fileTime : int)

Get the size, attributes, and the last modification time of the file.
File.Copy (srcPathName, destPathName : string)

Copy a file to another location.
File.Rename (srcPathName, destName : string)

Rename a file or directory.
File.Delete (pathName : string)

Delete a file.
File.DiskFree (pathName : string) : int

Return the free disk space in which the file or directory resides.
File.Exists (pathName : string) : boolean

Return true if the file exists.

Font
Font.New (fontSelectStr : string) : int

Return the fontID for a specified font string.
Font.Free (fontID : int)

Free a font.
Font.Draw (textStr : string, x, y, fontID, clr : int)

Draw text at position (x, y) with a font.
Font.Width (textStr : string, fontID : int) : int

Return the width of the string when displayed with a font.
Font.Sizes (fontID : int, var height, ascent, descent, internalLeading : int)

Return information about a font.
Font.Name (fontID : int) : string

Return the name of the font associated with fontID.

Font Enumeration
Font.StartName

Prepare to start listing the names of fonts on the system.
Font.GetName : string

Return the next font name.
Font.GetStyle (fontName : string, var bold, italic, underline : boolean)

Get the available styles for a font.

434 Introduction to Programming in Turing

Font.StartSize (fontName : string, fontStyle : string)
Prepare to start listing the sizes of a font and style.

Font.GetSize : int
Return the next size of the font.

Input

getch (var ch : char)
Get a single character from the keyboard.

getchar : char
Return the next keystroke in the keyboard buffer.

hasch : boolean
Return true if there is a keystroke in the keyboard buffer.

Input.Pause
Wait for any keystroke.

Limits
minint : int

Return minimum int type value.
maxint : int

Return maximum int type value.
minnat : nat

Return minimum nat type value.
maxnat : nat

Return maximum nat type value.
Limits.DefaultFW : int

Return the default fraction width used in printing using ñputî.
Limits.DefaultEW : int

Return the default exponent width used in printing using ñputî.
Limits.Radix : int

Return the "radix" (usually 2) of real numbers.
Limits.NumDigits : int

Return the number of radix digits in a real number.
Limits.MinExp : int

Return the smallest (base radix) exponent allowed.
Limits.MaxExp : int

Return the largest (base radix) exponent allowed.

Appendix C : Predefined Subprograms by Module 435

Limits.GetExp (f : real) : int
Return the (base radix) exponent of f.

Limits.SetExp (f : real, e : int) : real
Return the value of f with the (base radix) exponent replaced.

Limits.Rreb : real
Return the relative round-off error bound.

Math

abs (x : int) : int
abs (x : real) : real

Return the absolute value of x.
arctan (x : real) : real

Return the arctangent with result in radians.
arctand (x : real) : real

Return the arctangent with result in degrees.
cos (angle : real) : real

Return the cosine of angle in radians.
cosd (angle : real) : real

Return the cosine of angle in degrees.
exp (r : real) : real

Return the exponentiation function er.
ln (r : real) : real

Return the natural logarithm function loger.
max (x, y : int) : int
max (x, y : nat) : nat
max (x, y : real) : real

Return the maximum value of x and y.
min (x, y : int) : int
min (x, y : nat) : nat
min (x, y : real) : real

Return the minimum value of x and y.
sign (r : real) : –1 .. 1

Return the sign of the argument.
sin (angle : real) : real

Return the sine of angle in radians.
sind (angle : real) : real

Return the sine of angle in degrees.

436 Introduction to Programming in Turing

sqrt (r : real) : real
Return the square root of r.

Mouse

Mouse.Where (var x, y, button : int)
Get the current location of the mouse cursor and the status of the mouse
buttons.

Mouse.Hide
Hide the mouse cursor.

Mouse.Show
Show the mouse cursor.

Mouse.ButtonMoved (motion : string) : boolean
Return whether the mouse button has been pressed.

Mouse.ButtonWait (motion : string, var x, y, buttonnumber, buttonupdown : int)
Get information about a mouse button being pressed.

Mouse.ButtonChoose (choice : string)
Select the mode for the mouse (either single or multiple button).

Music

Music.Play (music : string)
Play a series of notes.

Music.PlayFile (pathName : string)
Play music from a file. File must be in an allowable format.

Music.Sound (frequency, duration : int)
Play a specified frequency for a specified duration.

Music.SoundOff
Immediately terminate any sound playing.

Pic

Pic.New (x1, y1, x2, y2 : int) : int
Create a picture from a portion of the screen.

Pic.Draw (picID, x, y, mode : int)
Draw a picture on the screen at location (x, y).

Appendix C : Predefined Subprograms by Module 437

Pic.Free (picID : int)
Free up a picture created by Pic.New or Pic.FileNew.

Pic.FileNew (pathName : string) : int
Read a picture in from a file.

 Pic (cont...)

Pic.Save (picID : int, pathName : string)
Save a picture to a file for use with Pic.FileNew or Pic.ScreenLoad.

Pic.ScreenLoad (fileName : string, x, y, mode : int)
Load a picture stored in a file straight to the screen.

Pic.ScreenSave (x1, y1, x2, y2 : int, pathName : string)
Save a portion of the screen to a file for use with Pic.FileNew or
Pic.ScreenLoad.

Rand

Rand.Real : real
Return a random real number from 0.0 to 1.0.

Rand.Int (low, high : int) : int
Return a random integer from low to high inclusive.

Rand.Next (seq : 1 .. 10) : real
Return a random real number from 0.0 to 1.0 from a sequence.

Rand.Seed (seed : int, seq : 1 .. 10)
Set the random seed in a sequence.

Rand.Set
Set the random seed in the default sequence to the default value.

RGB

RGB.GetColor (colorNumber : int, var redComp, greenComp, blueComp : real)
RGB.GetColour (colorNumber : int, var redComp, greenComp, blueComp : real)

Get the red, green, and blue values for a color.
RGB.SetColor (colorNumber : int, redComp, greenComp, blueComp : real)
RGB.SetColour (colorNumber : int, redComp, greenComp, blueComp : real)

Set the red, green, and blue values for a color.

438 Introduction to Programming in Turing

RGB.AddColor (redComp, greenComp, blueComp : real) : int
RGB.AddColour (redComp, greenComp, blueComp : real) : int

Create a new color with specified red, green, and blue values.
maxcolor : int
maxcolour : int

Return the maximum color number available.

RGB (cont...)

Color Names
black, blue, green, cyan, red, magenta, purple, brown, white,
gray, grey, brightblue, brightgreen, brightcyan, brightred,
brightmagenta, brightpurple, yellow

Names of colors.
brightwhite

Exists only under DOS. Under Windows, X-Windows and Mac, this is
darkgray.

darkgray, darkgrey
Exists only under Windows, X-Windows, and Mac. Under DOS this is
brightwhite.

colorfg, colourfg
Foreground color. Under DOS this is white. Under Windows, X-Windows,
and Mac this is black.

colorbg, colourbg
Background color. Under DOS this is black. Under Windows, X-Windows, and
Mac this is white.

Str

index (s, pattern : string) : int
Return the position of pattern within string s.

length (s : string) : int
Return the length of the string.

repeat (s : string, i : int) : string
Return the string s concatenated i times.

Appendix C : Predefined Subprograms by Module 439

Stream

eof (stream : int) : boolean
Return true if end of file of a stream has been reached.

Stream.Flush (stream : int)
Flush an output stream.

Stream.FlushAll
Flush all open output streams.

Sys

Sys.GetEnv (symbol : string) : string
Return the environment string.

Sys.GetPid : int
Return the process id number of the current task.

Sys.Exec (command : string) : int
Execute a program using the operating system.

Command Line Arguments
Sys.Nargs : int

Return the number of command line arguments.
Sys.FetchArg (i : int) : string

Return the specified command line argument.

Text

maxrow : int
Return the number of screen text rows.

maxcol : int
Return the number of screen text columns.

Text.Locate (row, col : int)
Place cursor at character position (row, col).

Text.LocateXY (x, y : int)
Place cursor as close to pixel position (x, y) as possible.

Text.WhatRow : int
Return the current cursor row.

Text.WhatCol : int
Return the current cursor column.

440 Introduction to Programming in Turing

Text.Cls
Clear the screen, setting it to all spaces.

Text.Color (clr : int)
Text.Colour (clr : int)

Set text color.
Text.ColorBack (clr : int)
Text.ColourBack (clr : int)

Set text background color.

Text (cont...)

Text.WhatColor : int
Text.WhatColour : int

Return the currently-active text color.
Text.WhatColorBack : int
Text.WhatColourBack : int

Return the currently-active text background color.
Text.WhatChar (row, col : int, var ch : char, var foreColor, backColor : int)

Return the character and text colors at a cursor position.

Time

Time.Sec : int
Return number of seconds since 1/1/1970 00:00:00 GMT.

Time.Date : string
Return the current date and time as a string.

Time.SecDate (timeInSecs : int) : string
Convert the number of seconds into a date/time string.

Time.DateSec (dateString : string) : int
Convert a date/time string into a number of seconds.

Time.SecParts (timeInSecs : int, var year, month, day, dayOfWeek, hour, min, sec : int)
Convert the number of seconds since 1/1/1970 00:00:00 GMT into a year,
month, day, day of week, hour, minute, and seconds.

Time.PartsSec (year, month, day, hour, minute, second : int) : int
Convert the year, month, day, hour, minute, and seconds integers into the
number of seconds since 1/1/1970 00:00:00 GMT.

Time.Elapsed : int
Return milliseconds since the program started to run.

Appendix C : Predefined Subprograms by Module 441

Time.ElapsedCPU : int
Return milliseconds of CPU time since the program started to run.

Time.Delay (duration : int)
Sleep for a specified number of milliseconds.

Typeconv

From Int
intreal (i : int) : real

Convert an integer to a real.
intstr (i : int) : string

Convert an integer to a string.

From Real
round (r : real) : int

Convert a real to an integer (rounding to closest).
floor (r : real) : int

Convert a real to an integer (rounding down).
ceil (r : real) : int

Convert a real to an integer (rounding up).
realstr (r : real, width : int) : string

Convert a real to a string.
erealstr (r : real, width, fractionWidth, exponentWidth : int) : string

Convert a real to a string (exponential notation).
frealstr (r : real, width, fractionWidth : int) : string

Convert a real to a string (no exponent).

From String
strint (s : string [, base : int]) : int

Convert a string to an integer.
strintok (s : string [, base : int]) : boolean

Return whether a string can be converted to an integer.
strnat (s : string [, base : int]) : nat

Convert a string to a natural number.
strnatok (s : string [, base : int]) : boolean

Return whether a string can be converted to a natural number.
strreal (s : string) : real

Convert a string to a real.

442 Introduction to Programming in Turing

strrealok (s : string) : boolean
Return whether a string can legally be converted to a real.

Typeconv (cont...)

From Nat
natreal (n : nat) : real

Convert a natural number to a real.
natstr (n : nat) : string

Convert a natural number to a string.

To/From ASCII
chr (i : int) : char

Return a character with the specified ASCII value.
ord (ch : char) : int

Return the ASCII value of a specified character.

View

View.ClipSet (x1, y1, x2, y2 : int)
Set the clipping region to the specified rectangle.

View.ClipAdd (x1, y1, x2, y2 : int)
Add another rectangle to the clipping region.

View.ClipOff
Stop all clipping.

View.Set (setString : string)
Change the configuration of the screen.

View.WhatDotColor (x, y : int) : int
View.WhatDotColour (x, y : int) : int

Return the color of the pixel at location (x, y).
maxx : int

Return the maximum x coordinate (width – 1).
maxy : int

Return the maximum y coordinate (height – 1).

Appendix C : Predefined Subprograms by Module 443

Window

Window.Open (setUpString : string) : int
Open a new execution window.

Window.Close (winID : int)
Close an execution window.

Window (cont...)

Window.Select (winID : int)
Select an execution window for output.

Window.GetSelect : int
Return the currently-selected execution window.

Window.SetActive (winID : int)
Select and activate (make front-most) an execution window.

Window.GetActive : int
Return the currently-active execution window.

Window.Hide (winID : int)
Hide an execution window.

Window.Show (winID : int)
Show an execution window.

Window.Set (winID : int, setUpString : string)
Set the configuration of an execution window.

Window.SetPosition (winID : int, x, y : int)
Set the current position of an execution window.

Window.GetPosition (winID : int, var x, y : int)
Get the current position of an execution window.

444 Introduction to Programming in Turing

Appendix D : Reserved Words

This is the list of reserved words in Turing. They cannot be
used as identifiers.

addressint all and anyclass
array assert begin bind
body boolean by case
char checked class close
collection const decreasing deferred
div else elsif end
enum exit export external
false fcn for fork
forward free function get
if implement import in
include inherit init int
int1 int2 int4 invariant
label loop mod module
monitor nat nat1 nat2
nat4 new nil not
of opaque open or
pause pervasive pointer post
pre proc procedure process
put quit read real
real4 real8 record register
rem result return seek
set shl shr signal
skip string tag tell
then to true type
unchecked union unit var
wait when write xor

Appendix E : Operators 445

Appendix E : Operators

This is a list of the operators available in Turing and their
precedence.

Mathematical Operators

Operator Operation Result Type
Prefix + Identity Same as Operands
Prefix – Negative Same as Operands
+ Addition Same as Operands
– Subtraction Same as Operands
* Multiplication Same as Operands
/ Division Same as Operands
div Integer Division int
mod Modulo int
rem Remainder int
** Exponentiation Same as Operands
< Less Than boolean
> Greater Than boolean
= Equals boolean
<= Less Than or Equal boolean
>= Greater Than or Equal boolean
not= Not Equal boolean

Boolean Operators

Operator Operation Result Type
Prefix not Negation boolean
and And boolean
or Or boolean
=> Implication boolean

446 Introduction to Programming in Turing

Set Operators

Operator Operation Result Type
+ Union set
– Set Subtraction set
* Intersection set
= Equality boolean
not= Inequality boolean
<= Subset boolean
< Strict Subset boolean
>= Superset boolean
> Strict Superset boolean

Operators on Members and Sets

Operator Operation Result Type
in Member of Set boolean
not in Not Member of Set boolean
xor Exclusive Or set

Bit Manipulation Operators

Operator Operation Result Type
shl Shift left nat
shr Shift right nat
xor Exclusive Or nat

Pointer Operators

Operator Operation Result Type
^ Follow pointer Target type

Type Cheats

Operator Operation Result Type

Appendix E : Operators 447

Type cheat nat

Operator Short Forms

These can be used in place of the above notation.
not ~
not= ~=
not in ~in
and &
or |

Operator Precedence

Highest precedence operators first.

(1) **, ^, #
(2) prefix + and –
(3) * , / , div , mod , rem , shl , shr
(4) + , – , xor
(5) < , > , = , <= , >= , not= , in , not in
(6) not
(7) and
(8) or
(9) =>

448 Introduction to Programming in Turing

Appendix F : File Statements

File Commands

open open a file
close close a file
put write alphanumeric text to a file
get read alphanumeric text from a file
write binary write to a file
read binary read from a file
seek move to a specified position in a file
tell report the current file position
eof check for end of file

File Command Syntax

open : streamNo, fileName, ioCapability {, ioCapability }

ioCapability is one of get, put, read, write, seek, mod

put or write capability will cause any existing file to be truncated
to zero length unless the mod capability is also specified.

seek capability is needed to use seek or tell commands.

close : streamNo
get : streamNo , getItem { , getItem }
put : streamNo , putItem { , putItem }
read : streamNo [: fileStatus] , readItem { , readItem }
write : streamNo [: fileStatus] , writeItem {, writeItem }
seek : streamNo , filePosition or seek : streamNo , *
tell : streamNo , filePositionVar

Appendix F : File Statements 449

eof (streamNo) : boolean (This is a function.)

450 Introduction to Programming in Turing

Appendix G : Control Constructs
FOR for [decreasing] variable : startValue .. endValue

[by increment]
... statements ...
exit when expn
... statements ...

end for

LOOP loop
... statements ...
exit when expn
... statements ...

end loop

IF if condition then
... statements ...

{ elsif condition then
... statements ... }

[else
... statements ...]

end if

CASE case expn of
{ label expn { , expn } :

... statements ... }
[label :

... statements ...]
end case

Any number of exit and exit when constructs can appear at any place inside
for .. end for constructs and loop .. end loop constructs.

Appendix H : Colors in Turing 451

Appendix H : Colors in Turing

Color Color
Number Color Number Color

0 White 8 Dark Grey
1 Dark Red 9 Red
2 Dark Green 10 Green
3 Dark Yellow 11 Yellow
4 Dark Blue 12 Blue
5 Dark Magenta 13 Magenta
6 Dark Cyan 14 Cyan
7 Grey 15 Black

452 Introduction to Programming in Turing

Appendix I : Keyboard Codes for Turing
This table gives the ASCII values for characters typed at the

keyboard. These values are read by getch and getchar. To obtain
the ASCII value of a character, use the ord predefined function.

0 (space) 32 @ 64 ` 96
Ctrl-A 1 ! 33 A 65 a 97
Ctrl-B 2 " 34 B 66 b 98

3 # 35 C 67 c 99
Ctrl-D 4 $ 36 D 68 d 100
Ctrl-E 5 % 37 E 69 e 101
Ctrl-F 6 & 38 F 70 f 102
Ctrl-G 7 ' 39 G 71 g 103

Ctrl-H / BS 8 (40 H 72 h 104
Ctrl-I / TAB 9) 41 I 73 i 105
Ctrl-J/Enter 10 * 42 J 74 j 106

Ctrl-K 11 + 43 K 75 k 107
Ctrl-L 12 , 44 L 76 l 108
Ctrl-M 13 - 45 M 77 m 109
Ctrl-N 14 . 46 N 78 n 110
Ctrl-O 15 / 47 O 79 o 111
Ctrl-P 16 0 48 P 80 p 112
Ctrl-Q 17 1 49 Q 81 q 113
Ctrl-R 18 2 50 R 82 r 114
Ctrl-S 19 3 51 S 83 s 115
Ctrl-T 20 4 52 T 84 t 116
Ctrl-U 21 5 53 U 85 u 117
Ctrl-V 22 6 54 V 86 v 118
Ctrl-W 23 7 55 W 87 w 119
Ctrl-X 24 8 56 X 88 x 120
Ctrl-Y 25 9 57 Y 89 y 121
Ctrl-Z 26 : 58 Z 90 z 122

Ctrl-[/ ESC 27 ; 59 [91 { 123
Ctrl-\ 28 < 60 \ 92 | 124
Ctrl-] 29 = 61] 93 } 125
Ctrl-^ 30 > 62 ^ 94 ~ 126

Appendix I : Keyboard Codes for Turing 453

Ctrl-_ 31 ? 63 _ 95 Ctrl-BS 127

454 Introduction to Programming in Turing

Alt-9 128 Alt-D 160 F6 192 Ctrl-F3 224
Alt-0 129 Alt-F 161 F7 193 Ctrl-F4 225
Alt-- 130 Alt-G 162 F8 194 Ctrl-F5 226
Alt-= 131 Alt-H 163 F9 195 Ctrl-F6 227

Ctrl-PgUp 132 Alt-J 164 F10 196 Ctrl-F7 228
133 Alt-K 165 197 Ctrl-F8 229
134 Alt-L 166 198 Ctrl-F9 230
135 167 Home 199 Ctrl-F10 231
136 168 Up Arrow 200 Alt-F1 232
137 169 PgUp 201 Alt-F2 233
138 170 202 Alt-F3 234
139 171 Left Arrow 203 Alt-F4 235
140 Alt-Z 172 204 Alt-F5 236
141 Alt-X 173 Right Arrow 205 Alt-F6 237
142 Alt-C 174 206 Alt-F7 238

Back TAB 143 Alt-V 175 End 207 Alt-F8 239
Alt-Q 144 Alt-B 176 Dn Arrow 208 Alt-F9 240
Alt-W 145 Alt-N 177 PgDn 209 Alt-F10 241
Alt-E 146 Alt-M 178 Ins 210 242
Alt-R 147 179 Del 211 Ctrl-L Arrw 243
Alt-T 148 180 Shift-F1 212 Ctrl-R Arrw 244
Alt-Y 149 181 Shift-F2 213 Ctrl-End 245
Alt-U 150 182 Shift-F3 214 Ctrl-PgDn 246
Alt-I 151 183 Shift-F4 215 Ctrl-Home 247
Alt-O 152 184 Shift-F5 216 Alt-1 248
Alt-P 153 185 Shift-F6 217 Alt-2 249

154 186 Shift-F7 218 Alt-3 250
155 F1 187 Shift-F8 219 Alt-4 251
156 F2 188 Shift-F9 220 Alt-5 252
157 F3 189 Shift-F10 221 Alt-6 253

Alt-A 158 F4 190 Ctrl-F1 222 Alt-7 254
Alt-S 159 F5 191 Ctrl-F2 223 Alt-8 255

Appendix J : ASCII Character Set 455

Appendix J : ASCII Character Set
This table shows the ASCII character set. The characters for

ASCII codes 0 to 31 and 128 to 255 are dependent on the output
font.

32 Space 64 @ 96 `
33 ! 65 A 97 a
34 " 66 B 98 b
35 # 67 C 99 c
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 ' 71 G 103 g
40 (72 H 104 h
41) 73 I 105 i
42 * 74 J 106 j
43 + 75 K 107 k
44 , 76 L 108 l
45 - 77 M 109 m
46 . 78 N 110 n
47 / 79 O 111 o
48 0 80 P 112 p
49 1 81 Q 113 q
50 2 82 R 114 r
51 3 83 S 115 s
52 4 84 T 116 t
53 5 85 U 117 u
54 6 86 V 118 v
55 7 87 W 119 w
56 8 88 X 120 x
57 9 89 Y 121 y
58 : 90 Z 122 z
59 ; 91 [123 {
60 < 92 \ 124 |
61 = 93] 125 }
62 > 94 ^ 126 ~

456 Introduction to Programming in Turing

63 ? 95 _ 127 not shown

Appendix K : Glossary

Abstraction the essence of an idea or object without details.

Active window in a screen display system with several windows, the
window that is currently referred to by menu selection, mouse
pointing, or keyboard entry.

Actual parameter the value or variable name that appears in
parentheses after the name of a procedure or function when it is
used in a program.

Algorithm a step-by-step procedure by which certain results may be
produced.

Analogy describing one thing by reference to another. The earth is
round like an orange is an analogy.

And a logical operator connecting two conditions, each of which must
be true if the compound condition is to be true.

Animation achieving the effect of movement in a graphic by displaying
a sequence of graphics, one after the other, with small changes from
one to the next.

Application program computer software that can accomplish a
particular function, such as one to process text or handle business
accounting.

Arithmetic operator symbol standing for operation of addition (+),
subtraction (–), multiplication (*), or division (/).

Array a group of variables that share a name and are distinguished
from each other by each having a particular index value.

Glossary and Index 457

Arrow key a key on the keyboard that causes the cursor to move in the
direction of the arrow by one character space.

Artificial intelligence the simulation on a computer of activities that
are considered to require human intelligence.

ASCII code a binary code chosen as the American Standard Code for
Information Interchange.

Assertion a statement in a program that causes an interruption in
execution if the condition following the keyword assert is false.

Assignment statement a statement that assigns a value to a variable.

Average the value obtained by adding up the values of a number of
items and dividing by that number.

Background color the color filling a screen, or window, against which
other colored symbols or objects can be displayed.

Backslash the symbol \, used often as an escape character in a
computer.

Backspace key the key on the keyboard that causes the cursor to move
back one space erasing the symbol it moves back over.

Binary form a way of representing numerical values using only two
digits, rather then the decimal form which uses ten digits.

Binary operation a mathematical operation involving two values.

Binary search searching for a particular item in a sorted list of items by
successively dividing the list in two equal parts and discarding the
half which cannot possibly contain the sought item. The process
stops when only one item remains.

Bit a binary digit.

Body of loop the declarations and statements that are contained
between the beginning of a loop and the end of the loop.

458 Introduction to Programming in Turing

Boolean variables that can have one of two values, true or false.

Byte a group of binary digits, often eight, that are treated as a unit.

Case construct a program construct used for multi-way selection when
the various alternatives are characterized by different integer
values.

Case sensitive a language like Turing, that distinguishes between
capital letters and little letters.

Cascaded selection a selection construct that contains one or more
elsifs. It is used in multi-way selection.

CGA graphics one form of graphics system for PCs.

Character a symbol displayed on the screen or stored in the computer
memory. It may be a letter, a digit, or a special symbol.

Character graphics obtaining a picture on the screen by the placement
of character symbols in various rows and columns.

Clicking mouse pressing the button on the top of the mouse and
releasing it quickly.

Color number the integer value that corresponds to a particular color
that can be displayed.

Column the spaces across the screen in which symbols can be
displayed. Commonly there are 80 columns across a PC screen.

Command an instruction to the operating system of the computer.

Comment a line (or part of a line) of a program that is used to identify
it or describe what the program does in order to make it more
understandable to someone reading it.

Commutative operation a binary operation which results in the same
value if the two operands are interchanged.

Comparison operator an operator used in a condition to compare two
values.

Glossary and Index 459

Compile-time error a mistake in a program that can be discovered at
the time the program is being translated before execution starts.

Compiling translating a program in a high-level language into one that
can be understood by a computer.

Computational complexity a measure of the amount of calculation
required to execute a particular algorithm.

Conditional loop a repetition that is terminated when a particular
condition holds.

Constant a ñvariableî whose value never changes during the execution
of a program.

Control-break pressing the control and break keys simultaneously.
This is often used to interrupt program execution.

Control structure the sequence in which statements of a program are to
be executed.

Coordinates a specification of the position of a point on the screen.

Copyright the ownership of rights and privileges to a particular
intellectual property such as a book or computer software.

Correctness of a program a program is correct if it produces the correct
output for any possible input. Testing a program on a sample of
possible inputs cannot prove correctness.

Counted loop a repetition that is terminated when a counting index
reaches a certain value. The index is altered by a fixed amount on
each repetition.

Cursor the symbol displayed on the screen that indicates where the
next symbol input will be displayed.

Data the information that is processed by a program.

Database a set of related pieces of information that is stored in the
computer in a systematic way.

460 Introduction to Programming in Turing

Data file on disk a sequence of data items stored in secondary (disk)
memory.

Data type the kind of data represented, for example, numbers (real or
integer) or strings of characters.

Debugging looking for errors in a program and correcting them.

Decimal form the usual way of representing numbers in the scale of
ten.

Declaration of variable a line in a program that causes memory to be
reserved for the variable. The data type of the variable is given in
the declaration since different types require different amounts of
memory.

Desk top a term used in a window system to show the files that are
open or available.

Desk top publishing using the computer (on your own desk) to create
camera ready copy for printing.

Dialog box a box which appears, usually in an operating system, and
asks you to enter further information.

Digital computer a computer that works on devices that have two
states (say on or off) rather than one that represents information
continuously as a light meter does.

Directory of files a list of the names of all files on disk that can be
accessed at that time.

Disk a circular disk that can hold digital magnetic recordings and is
used as a means of storing information on a long term basis.

Disk drive the mechanism in the computer that spins the disk and has
read and write heads for ñplayingî and recording.

Disk file name each file on a disk must have a unique name by which
it may be retrieved.

Glossary and Index 461

Documentation descriptions in natural language and/or mathematics
that help make programs understandable to the reader.

Drag an operation with a mouse of pressing the button and holding it
down as you move to another screen location.

Echo of input when data is input from a keyboard it is usual for it to be
displayed (or echoed) on the screen as it is being typed.

Edit make changes in data or a program.

Editor the systems program that allows you to enter and edit programs
or data.

Efficiency of algorithm a measure of the computer time it takes to
execute an algorithm. This usually is a function of the amount of
data processed.

Encryption of data changing the symbols that represent data to other
symbols so as to encode it. Unless the secret of decoding is known
noone can understand it.

End-of-file value a special symbol stored automatically at the end of
any file of data.

Enter a term also used for the return key of a keyboard.

Error message output from the system to inform the user that an error
has occurred. The type and location of the error is given in the
message.

Exact divisor an integer that divides a number evenly with no
remainder.

Execution the operation of a program after it has been translated.

Expert system an application program that simulates the behavior of
an expert in a narrow field in providing answers to questions
posed by the user.

462 Introduction to Programming in Turing

Exponent the integer that gives the position of the point (binary or
decimal) to accompany another number that gives the actual
sequence of significant digits.

Exponential algorithm an algorithm who execution time rises in
proportion to a power that is dependent on number of items to be
processed, for example, 2N if there are N items.

Exponentiation raising a number to a power, for example, 23.

Field of record one of the items that make up the record structure.
Fields need not all be of the same data type.

Field size the number of character positions reserved for outputting an
item.

Forgiving program a program that asks the user to try again when an
incorrect action is taken rather than stopping execution when an
input error occurs.

Formal parameter in the definition of subprograms (either functions or
procedures) after the subprogram’s name follows, in parentheses, a
list of formal parameters each with a colon and a data type after its
name. These parameters represent information that is being given
to the subprogram for processing or, for procedures, also output
that is expected.

Formal relationship an expression, often mathematical, that relates the
unknown in a problem to the knowns.

Format the layout of information on input or output.

Function a subprogram that produces a value.

Generalization expressing a relationship in abstract terms that applies
in many particular instances.

Glossary and Index 463

Global variable a variable declared in the main program that can be
used in any subprogram. In general, it is not advisable to make use
of this capability inside the subprogram.

Hardware the electronic and mechanical parts of a computer.

Heuristic principle a principle that may be used to make reasonable
guesses about something that cannot be easily calculated or
proved.

I/O input and output.

I/O window a window that displays input and output during a
program’s execution.

Icon a small sketch displayed by the computer. Icons may be pointed to
by a mouse and dragged from one place to another.

Index of array the integer that identifies a particular element of an
array such as a list. Tables require two index values to identify an
element. (Sometimes called a subscript.)

Index of counted loop the integer variable that is set to a value upon
entry into the loop and changed on each repetition. The loop it
terminated when the index reaches a certain value. The index
variable must not be declared or altered in the body of the loop.

Initialization setting a starting value of a variable or values of an array.

Initialization in declaration setting the initial value of a variable or an
array in the declaration of its data type.

Input instruction an instruction that causes data to be read into the
computer.

Insertion sort a method of sorting where each new entry is inserted in
its proper position in an ordered sequence.

464 Introduction to Programming in Turing

Join operator the operator used to join strings together (in Turing the
+).

Justified output that is brought to line up along one edge of the page
or screen.

Knowledge base a systematic grouping of information in machine
readable form.

Known information that is given in the specification of a problem.

Linear search a technique for looking for a particular item in an
unordered list. Each item is examined in turn until the sought for
item is found.

List a sequence of items arranged one after the other.

Local variable a variable that is defined in a subprogram definition and
is accessible only to that subprogram. Variables can be local to loop
constructs as well.

Logical operator an operator that connects two simple conditions so as
to create a compound condition.

Lower case small letters.

Median the value that divides a sorted list of items in two equal halves.

Menu bar the screen display of available headings to the menus of
individual possible commands in an operating system.

Memory the part of the computer that stores information.

Merge to blend two or more sorted lists of items into a single sorted
list.

Microcomputer a computer that is small in size and usable by a single
person at a time.

Glossary and Index 465

Mixed number a number that has both an integer and fractional part.

Mouse a device for controlling the movement of a pointer on the
display screen and giving input through clicks.

Mouse button a device for giving input to the computer by pressing
and releasing it.

Multi-way selection a program construct that selects one of several
possible alternatives depending on conditions.

Nested loops one loop body wholly contained inside another loop’s
body.

Nested selections one selection construct wholly contained inside one
or other of the alternative clauses of another selection construct.

Operand the entity that is subject to an operator.

Origin of coordinates the base point from which distances are
measured in the x-and y-directions to locate a point.

Output information that is displayed, printed, or stored in secondary
memory by a program.

Output item an individual piece of information that is output.

Otherwise clause the alternative in a case construct that is selected if
none of the other labels is matched.

Paragraphing a program indenting the body of a loop, selection
alternative, or subprogram definition beyond the key line that
begins the construct.

Parameter a value passed to a subprogram when the subprogram is
called.

Pixel a dot on the display screen.

466 Introduction to Programming in Turing

Pixel position the coordinates on the screen of the point where a pixel
is located. Each graphics system limits the number of possible pixel
positions on the screen.

Pointer an arrow icon displayed on the screen in response to the
positions of the mouse. Also a way of storing the location of a
piece of information in the memory.

Polynomial time an algorithm that is executed in a time proportional
to a polynomial in the number of items being processed, for
example, N2+2N+1 if there are N items.

Precedence of operations the sequence in which operations are
performed in evaluating an expression.

Predefined subprograms subprograms such as sqrt that are part of the
Turing language.

Prime number a number that has no other exact divisors but 1 and
itself.

Procedure a subprogram that performs a task when called.

Program a set of instructions for a computer to perform a particular
task or job.

Program window the part of the display screen used to enter the
instructions of a program.

Prompt output from a program to get the user to take some action such
as entering information from the keyboard.

Pseudo-random numbers a sequence of apparently random numbers
that are in fact generated by an algorithm. Each number in the
sequence is created from the previous one. The beginning of the
sequence is called the seed.

Glossary and Index 467

Radix notation a display of digits in which the position of the digits
indicates the power of the number base that is to multiply it.

Random numbers see pseudo-random numbers.

Read only memory (ROM) memory used to record information that
cannot be changed by the user.

Real number a number with a decimal point (or binary point). Integers
are real numbers but not all real numbers are integers.

Record data type a data type that permits a group of items of possibly
different types, to be treated as a unit.

Recursive merge sort a method of sorting whereby a list is divided in
two and each half sorted by the recursive merge sort and then the
two sorted halves merged.

Recursive subprogram a subprogram that calls itself.

Redirecting input or output arranging to obtain standard input from a
disk file rather than the keyboard or sending standard output to a
disk file rather than to the screen.

Redundant information duplicated information in problem
specification, for example, John is 16 and in two years John will be
18.

Related lists two lists which may be of different data types that are in a
one-to-one relationship with each other for example one list of
person’s names and a related one of their phone numbers.

Relational operator the operator connecting two items in a condition,
for example, in the condition 6 > 5, the > is a relational operator.

Repetition one of the three basic constructs of all programs. The body
of the repetition is to be executed until a condition is met or a
counting index reaches a certain value.

Reserved word either a keyword in the Turing language or the name of
a predefined subprogram or constant.

468 Introduction to Programming in Turing

Round off to change a mixed number to the integer that is nearest to its
value.

Run to start the execution of a program.

Run-time error an error that is not discovered until execution begins,
for example, attempting to divide a number by zero.

Saving a file recording information from memory to the disk
(secondary memory).

Scroll the movement of the display of characters on the screen either
up or down as a unit.

Search space the number of items of information out of which one
particular item is sought.

Selecting a command using a mouse to choose an operating system
command from a menu of possible commands.

Selecting text choosing a portion of the display in the program
window to be deleted or copied. In some systems this is done by
dragging a mouse, in others by marking lines by a command.

Selection one of the three basic constructs that make up all programs.
Alternative sets of instructions are selected for execution
depending on some condition.

Sentinel a mark or symbol used to indicate the end of a file.

Side effect an action taken by a subprogram that is not its purpose.
Functions are not permitted to have side effects in Turing.

Significant digits the string of digits that describe a number without its
point (binary or decimal) in its proper place.

Simple condition two expressions separated by a relational operator.

Software computer programs.

Glossary and Index 469

Sorting placing a list of items in ascending or descending order of a
particular key belonging to the items.

Special character any character other than a letter or a digit.

Spreadsheet a display of information often a table used to make
projections and financial plans.

Startup disk a disk containing the operating system and compiler
necessary to enter and run programs.

Statement the basic elements of a program. See also instruction and
declaration.

Step-by-step refinement a technique for developing a program that
moves in steps from a statement of the problem specification in
English to a program in Turing to solve the problem.

Step size the amount by which the index of a counted loop is altered
on each repetition.

String a sequence of characters.

String constant a sequence of characters contained in quotation marks.

Stub an incomplete subprogram, generally one with a missing body,
used in program development where other subprograms are being
tested first.

Subscript see index of array.

Substring a portion of a string.

Syntax error an error in the grammar, or form, of a statement.

Table a display of values in rows and columns.

Test data sample data, typical of that which will occur in practice, used
to find errors in programs.

470 Introduction to Programming in Turing

Testing a program running the program using a range of input data
typical of what it is expected to process and comparing the output
with values obtained ñ by handî.

Text editor a program that permits you to change text by deletion,
addition, and substitution.

Text processing changing text both by editing and formatting the
output.

Token a sequence of characters surrounded by white space, that is,
blanks or returns.

Token-oriented input using an instruction that will read text a token at
a time.

Tracing execution carrying out ñby handî the actions that a computer
must go through during the running of a program. The values of all
variables must be kept track of as the trace proceeds. Used for
finding errors that are not syntax errors.

Translation changing a Turing program into one that can be executed
by the computer.

Type definition a statement in the program that gives a name to a
particular non-simple data type, for example, a record type.

Type font the style and size of a set of characters, letters and digits
used for output.

Unknown the information that is being sought when you solve a
problem.

Upper case capital letters.

User-friendly program a program that prompts input, labels output,
provides help to the user, and often is forgiving when the user
makes a wrong entry.

VGA graphics a commonly used color graphics system for the PC.

Glossary and Index 471

Variable a memory location where information can be stored.

Variable parameter a parameter of a procedure whose value will be
altered by the procedure.

White space blanks or return.

Window an area on the screen (possibly the whole screen) where
certain kinds of information appear.

Word processor application software used to enter text, edit it, format
it, save it, and so on.

472 Introduction to Programming in Turing

Index

abs, 424
Abstraction, 456
Active window, 456
Actual parameter, 283, 304, 456
Algorithm, 239, 303, 456

efficiency, 461
for Shell sort, 313

Analogy, 456
and, 119
And, 456
Angle, measurement of, 154
Animation, 137, 153, 456

speed of, 138
using a buffer, 372
using drawpic, 372
with graphics, 137
with music, 270

Application program, 456
Arc, drawing, 154
arctan, 425
arctand, 425
Arithmetic

expression, 81
operator, 456

Array, 246, 456
index of, 463
initialization of, 248
of records, 324
parameter

in procedure, 303
sorting of, 248
when to use, 246

Arrow key, 456

Artificial intelligence, 457
ASCII

character, 107
code, 141, 207, 225, 457

assert, 167, 218
Assertion, 457
Assignment, 94

of value to variable, 95
statement, 95, 457

asterisk, 196, 217, 219
Asterisk, 187
Average, 457

mark, 108
Background color, 135, 157, 457
Backslash \\, 222, 457
Backspace key, 457
Bank balance, 123
Bar chart, 309, 374
Binary

file, 331
form, 457
operation, 457
search, 457

bind-, 325
Binding to record, 325
Bit, 457
Body

of function, 282
of loop, 457
of procedure, 286

Boldface, 78, 204
Boolean, 457

data type, 252

Index 473

function, 216
operator, 119
value

false, 216
true, 216

variable, 252
Box

drawing in pixel graphics, 151
drawing tilted in pixel graphics,

368, 388, 393, 397, 406, 410,
411

Brace, curly, 414
Bracket, square, 415
Bubble sort, 303
Byte, 457
Cascaded selection, 458
case

construct, 451
case-, 172
Case

construct, 172, 458
sensitive, 458

catenation, 195
ceil, 425
CGA graphics, 458
Change command, 79
Character, 458

graphics, 458
in graphical pattern, 129
special, 107, 469

chr, 207, 225, 280, 425
Circle, drawing, 152
Click the mouse, 458
close, 219, 332
Close file, 219
cls, 130, 428

Collating sequence, 107
color, 156
color-, 133
Color

background, 135, 157, 457
drawing in, 133
of dot, 147

Color number, 458
colorback, 135, 157, 429
colour, 134, 156
colourback, 135, 157, 429
Column, 254, 458
Command, 458

for action, 174
selecting, 468

Comment, 458
Commutative operation, 458
Comparison

operator, 458
Compile, 459
Compile-time error, 458
Computational complexity, 459
Computer

digital, 460
Computer game, 361
Computer memory, 88
Condition, 106

simple, 468
Conditional loop, 459
Constant, 459

declaration of, 94
Control structure, 459
Control-break, 459
Control-D, 216
Controlling complexity, 239
Control-Z, 186, 216

474 Introduction to Programming in Turing

Conversion factor, 98
Coordinates, 146, 459
Copyright, 459
Correctness of a program, 459
cos, 424
cosd, 425
Counted loop, 111, 459

backwards, 114
index of, 463
with exit, 117

Counter, 111
cursor-, 136
Cursor, 128, 459

hiding of, 136, 137, 138, 139,
142

Data, 88, 459
encryption of, 461
file on disk, 182, 459
structure, 244
test, 469

Data base, 459
Data type, 88, 460

boolean, 252
integer, 92
named, 256
real, 92
record, 322, 467
string, 92
subrange, 252, 308

Debugging, 460
Decimal form, 460
Decimal point, 93
Declaration, 415

initialization in, 185, 463
inside construct, 237
of constant, 94

of variable, 88, 460
decreasing, 114
delay-, 133, 153, 430
Desk top, 460

publishing, 460
Diagonal line, 131
Dialog box, 460
Diamond shape, 231
Digit, 80
Digital computer, 460
Directory

of files, 460
Disk, 460

drive, 460
file name, 460

div, 110
Division, 61, 80
Documentation, 460
Dot, 83
Drag, 461
drawarc, 154
drawbox, 151, 368, 429
drawdot, 147, 429
drawfill, 152, 430
drawfillarc, 155, 430
drawfillbox, 152, 429
drawfilloval, 153, 430
Drawing

arc, 154
box in pixel graphics, 151
circle, 152
ellipse, 152
in color, 133
line in character graphics, 131
line in pixel graphics, 150

Index 475

tilted box in pixel graphics, 368,
388, 393, 397, 406, 410, 411

drawline, 150, 429
drawoval, 152, 429
drawpic, 371

animation using, 372
buffer, 371
mode, 371

Duration of note, 266
Dynamic

array size, 307
formal parameter, 305
string parameter, 305

Echo of input, 461
Edit, 461
Editor, 461
Efficiency of algorithm, 461
Eliminating character from string,
203
Ellipse, drawing, 152
else clause, 166
Encryption of data, 461
End of file, 184

marker, 185, 219
value, 461

Enter, 461
eof, 423
erealstr, 426
Error

compile-time, 458
execution, 92, 167, 198
message, 92, 461
run-time, 92, 167, 198, 468
syntax, 91, 469

Exact divisor, 461
Exchange of elements, 303

Execution, 461
error, 92, 167, 198

exp, 425
Expert system, 461
Explicit Constant, 422
Exponent, 461
Exponent form, 85, 93
Exponential algorithm, 462
Exponentiation, 85, 93, 462
Expression, 420

arithmetic, 81
false, 216
Field, 322

of record, 462
size output, 82

Field size, 462
File

binary, 331
close, 219
on disk, 218
saving, 468
text, 330, 331

Files, directory of, 460
Flat, 266
floor, 425
Flow chart, 232
Flow diagram, 232
for loop, 451

counting backwards, 114
For loop, 111

time-wasting, 133
with exit, 117

Forgiving program, 462
Formal parameter, 281, 462
Formal relationship, 462
Format, 462

476 Introduction to Programming in Turing

Formatting
output, 83
text, 222

frealstr, 427
Function, 462

body of, 282
boolean, 216
header of, 281
mathematical, 86, 424
plotting a mathematical, 155, 378
predefined, 109, 278, 281, 292,

423
side effect, 306
string valued, 284, 291
type transfer, 279, 425

Game, computer, 361
Generalization, 462
get, 89, 95
get skip, 216, 221, 251
getch, 362, 429
Global variable, 291, 310, 462
Grammar, 91
Graph, 155

labelling of, 156
Graphics

animation, 137
character, 458
highly interactive, 361
interactive, 130
parameter, 158
procedure, 428

Hardware, 463
hasch, 362, 423
Header

of function, 281
of procedure, 285

Hertz, 157
Heuristic principle, 463
Hiding the cursor, 136, 137, 138,
139, 142
Highly interactive graphics, 361
Histogram, 309
Hyphenation, 223
I/O, 463
Icon, 463
Identifier, 88, 422
if...then...else construct, 166
if...then...elsif...then...else construct,
169
if...then..else construct, 451
Indentation of body of loop, 114,
116, 117
index, 199, 423
Index, 111

of array, 463
of counted loop, 463

Infinite series, 122
init, 248
Initialization, 463

in declaration, 185, 463
of array, 248

Initialize, 109
Input, 90

echo of, 461
line-oriented, 186, 217, 219
of fixed number of characters,

215
redirection, 183
token-oriented, 91, 470

Input instruction, 463
Input/Output, 417
Input/Output window, 463

Index 477

Insertion sort, 463
int, 88
Integer, 80
Interactive graphics, 130
Interest rate, 123
intstr, 280, 426
Item, 82
Join operator, 463
Joining strings, 195
Justified, 464
Keyword, 78, 415
Knowledge base, 464
Known, 464
label

in case statement, 173
Labelling

of graph, 156
of results, 82

Left justified, 83
length-, 423
Line

diagonal, 131
drawing in character graphics,

131
drawing in pixel graphics, 150

Linear seach, 352
Linear search, 464
Line-oriented input, 186, 217, 219
Linked list, 357
List, 244, 464

linked, 357
ln, 425
Local variable, 287, 310, 464
locate, 128, 428
locatexy, 156, 430
Logical operator, 464

loop, 451
Loop

body of, 457
conditional, 459
counted, 111, 459
counted backwards, 114
counted with exit, 117
counter, 111
indenting, 114, 116, 117
nested, 465
nested inside a loop, 232
random exit from, 118, 119
scope of, 114
structure diagram, 230

lower, 306
Lower case, 464
Lower case letter, 108
Marker

end of file, 185, 219
Mathematical function, 86, 424
max, 424
maxcolor, 424
maxcolour, 424
maximum, 306
maxx, 424
maxy, 424
Median, 464
Memory, 464
Menu bar, 464
Menu of commands, 175
Merge, 464
Merge sort, 355
Message, 79
Microcomputer, 107, 464
Middle C, 266
min, 424

478 Introduction to Programming in Turing

minimum, 306
Mixed number, 464
mod, 332
Modular programming, 239
module-, 239
Mortgage, 123
Mouse, 465

button, 465
click the, 458

Moving records in memory, 328
Multiplication, 61, 80
Multi-way selection, 170, 465
Music

with animation, 270
Name, 88

of program, 98
Named data type, 256
Nested loop, 465
Nested selection, 465
Nesting, 171, 231

of structures, 231
nocursor, 136
not, 106, 120
Note

duration, 266
series of, 268

Null string, 118, 197
number

random real, 118
Octave, 266

shift of, 271
open-, 218, 332
Open file, 218
Operand, 465
Operator

arithmetic, 456

boolean, 119
comparison, 458
integer division, 110
join, 463
logical, 464
not, 120

ord, 207, 225, 426
Origin of coordinate, 146, 465
Otherwise clause, 465
Output, 90, 465

field size, 82
item, 465
real number, 81

Palindrome, 207
Parabola, 155
Paragraphing, 114, 465
Parameter

actual, 283, 304, 456
array, 303
dynamic string, 305
formal, 281, 462
formal dynamic, 305
of procedure, 267
variable, 289, 471

Parentheses, 81
Pattern,repetition of, 369
Pause, 268
Pie chart, 155, 376
Pig Latin, 223
Pitch, 266
Pixel, 146, 465

postion, 466
Pixel graphics with text, 145, 156
play, 266, 429
playdone, 270, 423
Plotting

Index 479

a mathematical function, 155,
378

Pointer, 358, 466
Polynomial time, 466
Post condition, 295
Pre condition, 294
Precedence of operators, 81, 466
Precedence rule for boolean
operators, 120
Predefined

function, 109, 278, 281, 292, 423
procedure, 292, 428
subprogram, 466

Prime number, 466
Print, 182
Procedure, 466

body of, 286
graphic, 428
header of, 285
parameter of, 267
predefined, 292, 428
variable parameter in, 289
with array parameter, 303
with no parameters, 285
with one parameter, 288

Produce a program, 414
Production rule, 414
Program

application, 456
correctness, 459
name, 98
production, 414

Program window, 466
Programming language, 78
Prompt, 90, 466
Pseudo-random number, 466

Punctuation mark, 221
put, 78, 89, 95
Quotes, 82
Radix notation, 467
rand, 118, 428
randint, 118, 292, 428
Random access to record on disk,
333, 337, 347
Random number, 292, 467

integer, 118
real, 118

Range of values, 111
read, 332
Read only memory, 467
Reading line from file, 186
real, 88
real number

random, 118
Real number, 80, 467
realstr, 427
Record

array of, 324
data type, 322, 467
field of, 322, 462
file of, 325
input of, 323
moving in memory, 328
on disk, random access, 333, 337,

347
output of, 323

Recursive
merge sort, 467
procedure, 356
subprogram, 294, 467

Redirection, 467
input, 183

480 Introduction to Programming in Turing

output, 182
Redundant information, 467
Reference, 420
Related arrays, 250
Related lists, 250, 467
Relational operator, 467
repeat-, 140, 206, 284, 423
Repeating a pattern, 369
Repetition, 467
Repetition construct, 230
Reserved word, 467
Resolution, 146
Rest, 268
result, 282
return-, 361
Right justified, 83
ROM, 467
round-, 109, 425
Round off, 468
Rounding, 81
Run, 468
Run-time error, 92, 167, 198, 468
Saving a file, 468
Scale, 155
Scope, 237

of loop, 114
Scroll, 468
Search

binary, 457
for pattern in string, 199
linear, 352, 464

Search space, 468
seek, 332, 333
Selecting a command, 468
Selecting part of a string, 196
Selecting text, 468

Selection, 468
cascaded, 458
case, 172
construct, 230
multi-way, 170, 465
nested, 465
sorting by, 249
structure diagram, 230
three-way, 168

Sentinel, 468
Sequential file, 219
setscreen, 136, 429
Sharp, 266
Shell sort, 313
Side effect, 468

of function, 306
sign, 424
Signal to stop, 106
Significant digit, 93, 468
Silence in music, 268
Simple condition, 468
Simple Language Translation, 223
sind, 425
sizepic, 371
Slash / symbol, 80
Software, 468
Solving of problem, 239
Sort

bubble, 303
insertion, 463
merge, 355
shell, 313

Sorting, 469
by selection, 249
of array, 248

sound-, 157, 430

Index 481

Sound
with graphics, 157

Source string, 79
Space, 82
Spaghetti programming, 232
Special character, 107, 469
Specification, 239
Speed of animation, 138
Spreadsheet, 469
sqrt, 86, 424
Startup disk, 469
Statement, 417, 469
Statistical distribution, 309
Step size, 469
Step-by-step refinement, 239, 469
Stream number, 218
string, 88
String, 78, 469

constant, 469
eliminating character from, 203
in quotes, 89, 95
joining, 195
null, 118, 197
search for pattern, 199
selecting part of, 196
substitution of one pattern for

another, 202
String-valued function, 284, 291
strint, 280, 426
strreal, 428
Structure

data, 244
Structure diagram, 230

for repetition, 230
for selection, 230
for sequence, 230

of elsif, 234
Structured programming, 230
Stub, 469
Subprogram, 239, 417

recursive, 294
Subrange data type, 252, 308

named, 256
Subscript, 469
Substitution, 79

of one pattern for another, 202
Substring, 196, 469
Swapping numbers, 237
Syntactic variable, 414
Syntax error, 91, 469
Table, 254, 469
takepic, 371
Target string, 79
tell, 333
Terminal token, 415
Test data, 469
Testing a program, 470
Text editor, 470
Text file, 330, 331
Text formatting, 222
Text processing, 470
Text with pixel graphics, 145, 156
then clause, 166
Three-way selection, 168
Tilted box, 368, 388, 393, 397, 406,
410, 411
Time-wasting for loop, 133
Token, 91, 470
Token-oriented input, 91, 470
Top-down approach, 239
Tracing execution, 470
Translation, 470

482 Introduction to Programming in Turing

trigonometry, 368
true, 216
Truncate, 109
Two-dimensional array, 254
Type, 416
Type definition, 470
Type font, 470
Type transfer function, 279, 425
Underscore, 89
Unknown, 470
upper-, 306
Upper case, 470
User-friendly program, 470
var, 88
Variable, 88, 471

assignment of value, 95
boolean, 252
declaration of, 88, 460
global, 291, 310, 462

local, 287, 310, 464
parameter, 289, 471

VGA graphics, 470
whatcolor, 423
whatcolorback, 158, 423
whatcolour, 423
whatcolourback, 158, 423
whatdotcolor, 158
whatdotcolour, 158
White space, 91, 471
Window, 130, 471

active, 456
Input/Output, 463
program, 466

Word processor, 471
write, 332
x-coordinate, 146
XOR mode, 371
y-coordinate, 146

